LEVANTAMENTO DE RECONHECIMENTO DE BAIXA INTENSIDADE DOS SOLOS DA RESERVA EXTRATIVISTA DO ALTO JURUÁ, MARECHAL THAUMATURGO, ACRE
REPÚBLICA FEDERATIVA DO BRASIL

Presidente
Fernando Henrique Cardoso

MINISTÉRIO DA AGRICULTURA E DO ABASTECIMENTO

Ministro
Marcus Vinicius Pratini de Moraes

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA

Diretor-Presidente
Alberto Duque Portugal

Diretores-Executivos
Elza Ângela Battaglia Brito da Cunha
Dante Daniel Giacomelli Scolari
José Roberto Rodrigues Peres

EMBRAPA ACRE

Chefe Geral
Ivandir Soares Campos

Chefe Adjunto de Pesquisa e Desenvolvimento
João Batista Martiniano Pereira

Chefe Adjunto de Comunicação, Negócios e Apoio
Evandro Orfanô Figueiredo

Chefe Adjunto de Administração
Milciades Heitor de Abreu Pardo
LEVANTAMENTO DE RECONHECIMENTO DE BAIXA INTENSIDADE DOS SOLOS DA RESERVA EXTRATIVISTA DO ALTO JURUÁ, MARECHAL THAUMATURGO, ACRE

Antonio Willian Flores de Melo
Eufran Ferreira do Amaral

Empresa Brasileira de Pesquisa Agropecuária
Embrapa Acre
Ministério da Agricultura e do Abastecimento

CDD 631.47098112
SUMÁRIO

RESUMO .. 5
INTRODUÇÃO .. 6
CARACTERIZAÇÃO GERAL DA ÁREA... 6
Localização, limites e extensão .. 6
Clima ... 7
Geologia ... 8
Geomorfologia ... 9
Vegetação .. 9
Hidrografia ... 11
METODOLOGIA .. 12
Prospecção e cartografia dos solos ... 12
SOLOS ... 13
Critérios e características diferenciais para caracterização e classificação de solos... 13
CLASSES DE SOLOS .. 13
Alissolos (A) ... 18
Luvisolos (T) .. 25
Cambissolo (C) ... 40
Chernossolos (M) ... 54
Gleissolos (G) .. 62
Neossolos (R) .. 68
LEGENDA ... 71
DESCRIÇÃO SUMÁRIA DAS UNIDADES DE MAPEAMENTO 72
CONCLUSÕES E RECOMENDAÇÕES .. 74
REFERÊNCIAS BIBLIOGRÁFICAS ... 75
ANEXO 1 .. 76
ANEXO 2 .. 77
LEVANTAMENTO DE RECONHECIMENTO DE BAIXA INTENSIDADE DOS SOLOS DA RESERVA EXTRATIVISTA DO ALTO JURUA, MARECHAL THAUMATURGO, ACRE

Antonio Willian Flores de Melo
Eufran Ferreira do Amaral

RESUMO: Este trabalho foi executado pela Universidade Federal do Acre (Ufac) em cooperação com a Fundação de Tecnologia do Estado do Acre (Funtac), Embrapa Acre e Universidade Estadual de Campinas (Unicamp). O levantamento de solos, em nível de reconhecimento de baixa intensidade, compreende a Reserva Extrativista do Alto Jurüá, localizada entre as coordenadas geográficas de 08º 45' e 09º 45' S, de latitude sul e 72º 00' e 73º 00' W, longitude a oeste. A metodologia utilizada é a mesma que a Embrapa Solos vem utilizando em estudos similares. Realizaram-se análises físicas e químicas no Laboratório de Solos da Embrapa Acre e as análises de ataque sulfúrico no laboratório da Embrapa Solos. No desenvolvimento da prospecção pedológica foram utilizadas imagens TM 345/Landsat - 5, 1992, tratadas no Laboratório de Processamento de Informações Georreferenciadas da Unicamp, na escala de 1:100.000 e 1:200.000. Os mapas finais de solos foram elaborados na escala de 1:250.000, com unidades de mapeamento em associações, dada a limitação da escala. Os principais solos encontrados na área são: Alissolos, Luvissolos, Cambissolos, Chernossolos, Gleissolos e Neossolos. Excluindo a alta fertilidade, os solos da Reserva Extrativista do Alto Jurüá apresentam sérias restrições de uso quando se consideram as condições de relevo em que estão inseridos. A área apresenta relevo ondulado a forte ondulado e solos com alto gradiente textural, implicando em alta suscetibilidade à erosão. Observou-se, em algumas áreas de relevo forte ondulado e sobre a ocorrência de Cambissolo e floresta tropical aberta, erosão laminar ligeira. No caso de retirada da floresta natural, este processo erosivo irá se intensificar, causando danos irreversíveis ao solo e, consequentemente, ao ambiente.

1 Trabalho financiado pela Unicamp, Universidade Federal do Acre e Embrapa Acre.
3 Eng. Agr., B.Sc., Embrapa Acre, Caixa Postal 392, 69908-970, Rio Branco-AC.
INTRODUÇÃO

A Reserva Extrativista do Alto Juruá possui solos de origem sedimentar, sendo que em alguns grupos têm influência calcária. Nas áreas de relevo suave ondulado a ondulado predominam os solos Luvisossos e Alissolos; nas áreas de relevo ondulado, a forte ondulado, os Cambissolos, que se associam, em pequena proporção, aos Chernossolos; nos vales planos do rio Juruá e seus afluentes ocorrem os Neossolos e os Gleissolos.

O presente trabalho teve por objetivo identificar e estudar os solos existentes na área, compreendendo a distribuição geográfica e cartografia das áreas por eles ocupadas, além do estudo das características físicas, químicas e mineralógicas, bem como sua classificação.

Este levantamento, realizado pela Universidade Federal do Acre (Ufac), por meio de um convênio de cooperação técnica com a Universidade Estadual de Campinas (Unicamp), com o apoio da Embrapa Acre e Funtac, na parte de compilação de dados, enquadra-se no nível de reconhecimento de baixa intensidade.

CARACTERIZAÇÃO GERAL DA ÁREA

Localização, limites e extensão

A Reserva Extrativista do Alto Juruá está localizada na parte ocidental do Estado do Acre, entre as coordenadas geográficas de 08º 45’ e 09º 45’ de latitude sul e 72º 00’ e 73º 00’ de longitude a oeste, no município de Marechal Thaumaturgo-Acre, fazendo fronteira com o Peru. Cobre uma área de aproximadamente 506.186 hectares e é cercada por quatro áreas indígenas (A. I. Kaxinawá do Rio Breu, A. I. Kampa do Rio Amônia, A. I. Jaminawá/Arara do Bagé e A. I. Kaxinawá do Rio Jordão) e pelo Parque Nacional da Serra do Divisor (Fig. 1).
FIG 1. Localização e limites da Reserva Extrativista do Alto Juruá.

Clima (Brasil, 1977)

De acordo com a classificação de Köppen, o clima dominante na área pertence ao grupo A (clima tropical chuvoso), abrangendo o tipo m (monção).

O tipo climático Am (chuva do tipo monção) caracteriza-se por apresentar uma estação seca de pequena duração, mas, devido aos totais elevados de precipitação, possui umidade suficiente para alimentar a floresta de características tropicais.

As condições climáticas da área em estudo estão sob a influência dos seguintes parâmetros meteorológicos:
Precipitação pluviométrica - A precipitação média anual é de 2.265 mm com período mais chuvoso de outubro a abril.

Temperatura - A média anual da temperatura é de 24,2ºC. As temperaturas mínimas absolutas registradas estão em torno de 10ºC no período menos chuvoso do ano (maio a outubro) e entre 15ºC e 18ºC no período mais chuvoso (novembro a abril). As temperaturas máximas absolutas são aproximadamente constantes em todos os meses, entre 34ºC e 36ºC.

Umidade relativa - A umidade relativa registrada revela duas situações distintas: durante o inverno situa-se em torno de 80% e durante o restante do ano em torno de 90%, sendo que o período de maior umidade relativa coincide com as temperaturas mais elevadas e a época de maior precipitação.

Geologia (Brasil, 1977)

As unidades geológicas desta área são representadas pela Formação Solimões que tem origem sedimentar Cenozóica (Terciário Superior - Quaternário Inferior).

Por toda a bacia do Acre distingue-se uma sequência constituída de sedimentos argilosos maciços ou acamados com concreções carbonáceas, gipsíferas e ferruginosas, veios de calcita e gipsita, níveis com material em carbonização (tufa a linhito) e com concentrações de fósseis vegetais e animais, podendo apresentar estratificações cruzadas de grandes, médias e pequenas amplitudes; siltitos maciços ou acamados; arenitos finos a grosseiros maciços ou estratificados, fráveis ou compactados com cimento carbonático ou ferruginoso, em camadas, lentes ou interdigitados com siltitos ou argilitos também maciços ou estratificados. Subordinadamente, ocorrem blocos de calcários arenosos, sílicos ou argilosos, arcóseo, arenitos limoníticos e conglomerados polimíticos, fossilíferos ou não (às vezes os fósseis são parciais ou totalmente fosfatizados), que recebem a denominação de Formação Solimões.

A Formação Solimões apresenta uma feição morfológica na área de estudo caracterizada por um relevo bastante dissecado, mostrando uma topografia com colinas de vertentes com forte declividade e vales revelando planícies de inundações pequenas, em que os sedimentos mais frequentes são argilo-siltosos.
Geomorfologia (Brasil, 1977)

As principais unidades morfoestruturais representadas na área são Depressão Rio Acre-Rio Javari e Planície Amazônica.

Depressão Rio Acre-Rio Javari

A feição geomorfológica contida nesta unidade é predominantemente colinosa, com altimetria de 250 m, e homogênea em toda a área. Uma das características comuns de todas os rios que drenam a região é o controle estrutural, evidenciado pelo paralelismo e mudanças de direções de seus cursos.

A feição colinosa, moldada sobre sedimentos de Plio-Pleistoceno, denominados Formação Solimões, ocupa a maior parte desta unidade morfoestrutural. É representada por colinas, cujas dimensões estão em torno de 250 m, com vales apresentando um aprofundamento de drenagem muito fraco. As cristas em que ocorrem também apresentam essas características.

Nas proximidades da área de terraços e planícies do rio Juruá, ocorre extensa faixa de interflúvios tabulares, constituindo uma exceção na homogeneidade da feição colinosa que tem predominância.

Planície Amazônica

Situ-se nos vales que cortam os sedimentos plio-pleistocênicos da Formação Solimões. O rio Juruá, composto por uma rede de afluentes, tem maior expressão na deposição desses sedimentos. O curso desse rio é caracterizado por meandros, muitos dos quais abandonados, em forma de lagos, que se apresentam desde parciais a totalmente colmatados. A faixa de terrenos holocênicos engloba duas formas de relevo: áreas individualizadas com terraços e áreas mapeadas conjuntamente como terraços e planícies fluviais.

Vegetação (Brasil, 1977)

A vegetação que recobre a área compreende diversas formações diferenciadas como consequência natural da variação ecológica, sendo representada pela floresta tropical, caracterizada por espécies arbóreas heterogêneas, com sub-bosque constituído por um estrato e plântulas, geralmente resultantes de regeneração das árvores de estrato superior. Parte delas está ocupando áreas sedimentares. Os elementos que compõem esta floresta são caracterizados por uma cobertura de árvores
emergentes de porte elevado. A regeneração das espécies arbóreas ocorre em todas as situações topográficas (Brasil, 1976). Dentre as mais importantes tipologias, consideram-se as seguintes formações: Campinarana, Floresta tropical densa e Floresta tropical aberta.

Campinarana

Esta região ecológica ocupa o relevo dissecado (em interflúvios tabulares), com a cobertura sedimentar plio-pleistocênica (Terciário/Quaternário), com duas fisionomias (arbóreas densa e arbustiva), constituindo a sub-região das áreas de acumulação inundáveis. Esta sub-região restringe-se às pequenas áreas de acumulação inundáveis.

A ocorrência nesta área de manchas de Gleissolo e Espodosso limitou o desenvolvimento da vegetação, devido ao caráter oligotrófico apresentado por estes solos, permitindo que se instalassem neste ambiente plantas altamente especializadas, capazes de sobreviver.

Floresta tropical densa

É uma formação que, na grande região Amazônica, pode ser considerada sinônimo de Floresta ombrófila tropical (também conhecida como Pluvisilha, Floresta tropical chuvosa etc.). A amplitude de ocorrência desta formação é bem pequena.

A Floresta densa dos climas quentes, úmidos e superúmidos, com diminuição acentuada das chuvas em certas épocas do ano, caracteriza-se sobretudo por suas grandes árvores, por vezes com mais de 50 m de altura, que sobressaem no estrato arbóreo uniforme entre 25 e 35 m de altura.

De acordo com sua distribuição espacial, esta subclasse de floresta diversifica-se em variações fisionônicas, refletidas pela posição topográfica, que ocorre muitas vezes, caracterizando-se por espécies autóctones dominantes.

Na área de estudo ocorre a sub-região dos baixos platôs da Amazônia, na superfície dissecada do alto rio Juruá, que se caracteriza por apresentar principalmente as seguintes espécies: urucurana, mututi-duro, matamatá-branco, abiorana-vermelha, abiorana-seca, andirobarana e outras.

Floresta densa das terras baixas

Esta floresta está instalada sobre os sedimentos do terciário, principalmente sobre os interflúvios de formas tabulares.

As comunidades dessa floresta são bem caracterizadas por uma cobertura de árvores emergentes gigantescas (+/- 50 m de altura). Nos
dissecados em cristas e colinas, às vezes, são observados grupamentos arbóreos menores e bastante uniformes, quanto à altura dos indivíduos do estrato superior (± 30 m). O sub-bosque nas áreas tabulares é mais aberto do que nas superfícies de porte arbustivo, principalmente palmeiras. Porém, de uma maneira geral, a regeneração de espécies arbóreas domina em todas as situações topográficas.

Floresta tropical aberta

Esta é a formação que predomina na área de estudo. É uma formação típica de regiões quentes e úmidas, com fortes chuvas e período seco curto deprimido. É um tipo de floresta caracterizado por árvores de grande porte, bastante dispersas, em que aparecem frequentes agrupamentos de palmeiras, e enorme quantidade de plantas fanerófilas sarmentosas, que envolvem as árvores e cobrem inteiramente o estrato inferior. Aqui ocorrem as formas fisionômicas ecológicas total ou parcialmente envolvidas por lianas.

Floresta aberta com palmeiras

As características principais dessas comunidades florestais são mesofaneróficas resuladas, sendo a *Palmae* do gênero *Iriartea* no arenito terciário e a *Orbigyna* no embasamento. Além destes elementos, ocorrem muitas outras palmeiras. As áreas aluviais de Quaternário e as superfícies dissecadas do Terciário e do embasamento são caracterizadas pela presença de palmeiras situadas nas planícies de inundação e nos talvegues dos vales.

Floresta aberta com bambu

É uma fisionomia ecológica característica, na qual aparecem bambus, que em determinados locais como às margens dos igarapés e ao longo das “estradas dos seringais” se agrupam densamente, porém nas comunidades naturais dispersam-se não apresentando uma fisionomia definida.

Hidrografia

A Reserva Extrativista do Alto Juruá tem uma rede de drenagem bastante vasta, apresenta alguns rios e uma quantidade muito grande de igarapés, sendo os principais: rios Juruá, Amônia, Acuriá, Arara, Breu, Bagé, Tejo e os igarapés São João e Caipora.

O rio Juruá apresenta regimes influenciados pelo período chuvoso, reduzindo-se bastante o volume d’água durante o período de estiagem, assim como os demais rios e igarapés que são seus afluentes. É um rio que
se apresenta bastante sinuoso, água barrenta (transporte de partículas em suspensão), largo (>100 metros de largura no período chuvoso) e com boas condições de navegabilidade para embarcações de pequeno porte, na época menos chuvosa. Os demais rios e igarapés são de pequeno porte, tornando-se difícil a navegabilidade na época seca, até mesmo para pequenas embarcações. Os rios Tejo e Amônia são mais navegáveis por terem maior porte, entretanto, só até certo ponto de suas extensões.

METODOLOGIA

Prospecção e cartografia dos solos

Os trabalhos de escritório iniciaram-se com a revisão bibliográfica, em que foram coletadas todas as informações possíveis da área, aquisição de material básico, elaboração do mapa base e de curvas de nível na Fundação de Tecnologia do Estado do Acre (Funtac), assim como outros estudos correlatos que pudessem servir de subsídios na execução do presente levantamento.

Com base nas informações disponíveis e em imagens TM 345/Landsat - 5, 1992, escala 1:100.000 e 1:200.000, procedeu-se a fotointerpretação das imagens com o objetivo de estabelecer a correlação dos elementos de fotointerpretação, para obtenção do delineamento dos padrões fisiográficos e de sua respectiva legenda.

Tendo por base os conhecimentos preliminares adquiridos e o delineamento obtido pela fotointerpretação das imagens de satélites, procedeu-se o mapeamento dos solos, usando principalmente a rede de drenagem, caminhos, estradas de seringa, picadas, considerando-se o relevo, geologia, vegetação e uso atual da terra. Identificados os padrões de áreas representativas, prosseguiu-se a abertura de perfis pedológicos, com descrição morfológica detalhada e coleta de seus respectivos horizontes, posteriormente enviados ao laboratório para análise física e química.

Após o trabalho de campo, fez-se uma reinterpretação para realizar ajustes efetuados durante o desenvolvimento dos trabalhos de campo, considerando sempre os aspectos fisiográficos e a escala final do mapa de solos, permitindo, desse modo, uma maior segurança e precisão no delineamento das unidades de mapeamento.

Nas descrições dos perfis, adotaram-se as normas contidas em Estados Unidos (1951) e Lemos & Santos (1996).

As cores das amostras de solos foram determinadas por meio de comparações com as da Munsell... (1971).
Os solos da área da Reserva Extrativista do Alto Juruá foram classificados de acordo com o sistema desenvolvido pela Embrapa (1999). De posse dos dados de campo e das relações fotoimagem/solo, efetuou-se a reinterpretação das imagens, obtendo-se o mapa de solos na escala 1:250.000, bem como a legenda de identificação constituída de associações de classe de solo.

SOLOS

Critérios e características diferenciais para caracterização e classificação de solos

Na classificação e caracterização dos solos foram utilizados critérios e características diferenciais que permitiram separá-los em várias classes taxonômicas e unidades de mapeamento as quais são necessárias para evidenciar o delineamento e a distribuição geográfica das diferentes unidades no mapa de solos, assim como avaliar a potencialidade dos solos ao uso agrossilvipastoril. Os critérios e características distintas utilizadas na separação das classes de solos estão de acordo com as normas adotadas pela Embrapa (1999).

Caráter Distrófico

Especificação utilizada para solos que apresentam saturação de bases inferior a 50%.

Caráter Eutrófico

Especificação utilizada para solos que apresentam saturação de bases média a alta maior ou igual a 50%.

Caráter Epieutrófico

Especificação utilizada para solos que se apresentam Eutróficos apenas na seção superior. Para verificar se um solo é Distrófico ou Eutrófico, considera-se o valor V(%) dos horizontes B e/ou C.

Caráter Alumínico

Especificação utilizada para a condição em que os materiais constitutivos do solo se encontram em estado dessaturado e caracterizado por teor de alumínio extraível \(\geq 4 \text{ cmol/kg de solo} \), além de apresentar saturação por alumínio \(\geq 50\% \) e/ou saturação por bases \(\geq 50\% \).
Caráter Crômico

O termo crômico é usado para caracterizar as modalidades de solos que apresentam, na maior parte do horizonte B, excluído o BC, predominância de cores (amostras úmidas) conforme definida a seguir:

? matiz 7,5YR ou mais com valor superior a 3 e croma superior a 4; ou
? matiz mais vermelho que 7,5YR com croma maior que 4.

Caráter Hipocrômico

Usado para caracterizar solos que não se enquadram no Caráter Crômico.

Tipo de Horizonte A

Horizonte A chernozêmico

É um horizonte mineral superficial espesso, com estrutura granular ou grumosa, normalmente bem desenvolvido e consistência mais tipicamente macia quando seco e friável quando úmido, escuro, rico em matéria orgânica, elevada saturação de bases (V% > 50%), tendo o cálcio e o magnésio com cátions trocáveis predominantes.

Horizonte A proeminente

É um horizonte de constituição mineral, apresenta as mesmas características morfológicas do A chernozêmico, diferindo dele pela baixa saturação por bases V% < 50%. Como é morfologicamente idêntico ao chernozêmico, é praticamente impossível, no campo, identificá-lo garantidamente sem a ajuda de dados analíticos. Na ausência desses dados, o emprego de peagâmetro ou inferências obtidas por meio da fitofisionomia da cobertura vegetal primária, da utilização agrícola, do material de origem e clima, permitem reconhecê-lo com razoável segurança.

Horizonte A moderado

É um horizonte superficial que apresenta teores de carbono orgânico igual ou maior que 0,58%, cores, quando úmido, com valores iguais ou inferiores a 5 e uma espessura ou cor que não satisfaz as aquelas requeridas para caracterizar o horizonte A chernozêmico ou proeminente, além de não satisfazer também os requisitos para caracterizar um horizonte A antrópico ou turfoso.
Horizonte A fraco

É um horizonte mineral superficial fracamente desenvolvido, seja pelo reduzido teor de colóides minerais e orgânicos ou por condições externas de clima e vegetação (Embrapa, 1999).

Classes texturais

Textura arenosa

Compreende as classes texturais areia e areia franca.

Textura média

Compreende classes texturais ou parte delas, tendo composição granulométrica menos de 35% de argila e mais de 15% de areia, excluídas as classes texturais areia e areia franca.

Textura argilosa

Compreende classes texturais ou parte delas, tendo em sua composição granulométrica de 35% a 60% de argila.

Textura muito argilosa

Solos que apresentam mais de 60% de argila na fração granulométrica.

Relação textural

É a relação da média da porcentagem de argila do horizonte B, excluindo o B3, pela média da porcentagem de argila do horizonte A.

Profundidade do solo

Profundo

Termo empregado para caracterizar classes de solos que são normalmente rasos, no caso em que a espessura do sólum (A + B) varia de 100 a 200 cm.
Classes de erosão

Erosão, no sentido amplo, refere-se à remoção da parte superficial e subsuperficial do solo, principalmente pela ação da água e do vento (Reunião... 1995).

São consideradas as seguintes classes de erosão:

Não-aparente

O solo não apresenta sinais perceptíveis de erosão laminar ou em sulcos.

Ligeira

O solo apresenta menos de 25% do horizonte A ou camada arável removida, quando esta for inteiramente constituída pelo horizonte A. Solos que apresentam horizonte A original pouco espesso (< 25 cm), nos quais a camada arável é constituída de horizonte A e parte do B, também se enquadram nesta classe. As áreas apresentam sulcos superficiais, ocasionais e rasos que podem ser cruzados por máquinas agrícolas e desfeitos pelas práticas normais de preparo do solo. Nesta classe de erosão os solos, em geral, não foram suficientemente afetados ao ponto de alterar o caráter e a espessura do horizonte A.

Atividade de argila

Conceitua-se atividade de argila a capacidade de troca de cátions (T) correspondente à fração argila, calculada pela expressão: \(T \times 100/\% \) de argila.

Argila de atividade alta (Ta)

Apresenta valor maior ou igual a 27 cmol/100 g de argila sem correção para carbono.

Argila de atividade baixa (Tb)

Apresenta valores menores que 27 cmol/100 g de argila sem correção para carbono.

Classes de drenagem

Com referência à drenagem, foram usadas as seguintes classes:
Bem drenado

A água é removida do solo com facilidade, porém não rapidamente; os solos desta classe comumente apresentam textura argilosa ou média, não ocorrendo normalmente mosqueado de redução, entretanto quando presente, o mosqueado localiza-se à grande profundidade.

Moderadamente drenado

A água é removida do solo um tanto lentamente, de modo que o perfil permanece molhado por uma pequena, mas significativa parte do tempo. Os solos desta classe comumente apresentam uma camada de permeabilidade lenta imediatamente abaixo do sólum. O lençol freático acha-se abaixo do sólum ou afetando a parte inferior do horizonte B, por adição de água pela translocação lateral interna ou alguma combinação dessas condições. Podem apresentar algum mosqueado de redução na parte inferior ou no topo do B, associado à diferença textural acentuada entre A e B.

Imperfeitamente drenado

A água é removida do solo lentamente, de tal modo que este permanece molhado por período significativo, mas não durante a maior parte do ano. Os solos desta classe comumente apresentam uma camada de permeabilidade lenta no sólum, lençol freático alto, adição de água por meio de translocação lateral interna ou alguma combinação destas condições. Normalmente, apresentam mosqueado de redução no perfil, notando-se na parte inferior indícios de gleização.

Mal drenado

A água é removida do perfil tão lentamente que o solo permanece molhado por grande parte do tempo. O lençol freático comumente está à superfície ou próximo dela durante considerável parte do ano. As condições de má drenagem devem-se ao lençol freático elevado, camada lentamente permeável no perfil, adição de água por meio de translocação lateral interna ou alguma combinação dessas condições. É freqüente a ocorrência de mosqueado no perfil e características de gleização.

Fases empregadas

Fases de vegetação

Têm como objetivo fornecer dados correlacionados com o maior ou menor grau de umidade. Na maioria dos casos, a vegetação natural reflete as condições climáticas de uma determinada área. Como os dados
climatológicos são escassos, procurou-se, por meio dela ou de seus remanescentes, obter informações correlacionadas com os dados climatológicos existentes e os tipos florísticos identificados, sobretudo no que diz respeito ao seu comportamento no período seco.

Fases de relevo

São empregadas de modo a fornecer subsídios diretamente correlacionados com os graus de limitações ao emprego de implementos agrícolas e susceptibilidade à erosão.

- Relevo plano – 0% a 3% de declive;
- Relevo suave ondulado – 3% a 8% de declive;
- Relevo ondulado – 8% a 20% de declive;
- Relevo forte ondulado – 20% a 45% de declive; e
- Relevo plano de várzea.

CLASSES DE SOLOS

As definições e classificações dos solos, apresentadas a seguir para ordens e subordens, são as contidas no Sistema Brasileiro de Classificação de Solos (Embrapa, 1999).

Alissolos (A)

Solos constituídos por material mineral, com horizonte B textural ou nítico, com argila de atividade alta igual ou superior a 20 cmol/kg de argila ou apresentando alto conteúdo de alumínio extraível ($\text{Al}^{3+} > 4$ cmol/kg de solo) que aumenta com a profundidade, além de apresentar saturação por alumínio > 50% e/ou saturação por bases < 50% na maior parte do horizonte B, e satisfazendo os seguintes requisitos:

- horizonte plínico, se presente, não está acima do horizonte B e nem é coincidente com a parte superficial deste horizonte;
- horizonte glei, se presente, inicia-se após 50 cm de profundidade e não coincide com parte superficial do horizonte B e nem ocorre acima deste horizonte.

Subordens registradas

- Alissolo Crômico argilúvico típico.
- Alissolo Hipocrômico argilúvico típico.
Descrição dos perfis

Número de campo: 5 - 3;
Perfil: 10 (Tabela 1);
Data: 17.1.1996;
Classificação: Alissolo Crômico argilúvico típico;
Localização, município e Estado: Reserva Extrativista do Alto Juruá-Boca do Tejo, Marechal Thaumaturgo, Acre;
Litologia: Argilitos silticos e siltitos argilosos carbonatados;
Formação geológica: Formação Solimões;
Material originário: Sedimentos da Formação Solimões;
Pedregosidade: Não-pedregosa;
Rochosidade: Não-rochosa;
Relevo local: Ondulado;
Relevo regional: Forte ondulado;
Erosão: Não-aparente;
Drenagem: Moderadamente drenado;
Vegetação primária: Floresta tropical aberta com palmeiras;
Uso atual: Floresta primária;
Descrito e coletado por: Antonio Willian Flores de Melo e Eufran Ferreira do Amaral.
Descrição morfológica

A1 0 - 9 cm; bruno-escuro (10YR 3/3 úmido); franca; moderada médio blocos subangulares; ligeiramente duro, friável; transição plana e clara.

A2 9 - 41 cm; bruno-amarelado (10YR 5/4 úmido); franca; moderada médio blocos subangulares; muito duro, friável; transição plana e clara.

AB 41 - 49 cm; bruno-amarelado (10YR 5/6 úmido); franco-siltosa; fraca médio blocos subangulares; muito duro, friável; transição plana e clara.

BA 49 - 59 cm; bruno-amarelado (10YR 5/8 úmido); cinzento-claro (10YR 7/2 mosqueado); franco-siltosa; maciça que se desfaz em blocos angulares médios a grandes; muito duro, firme; transição plana e clara.

Bt 59 - 116 cm; bruno-amarelado (10YR 5/8 úmido); cinzento-claro (10YR 6/1 mosqueado); franco-siltosa; maciça que se desfaz em blocos angulares médios a grandes; muito duro, firme; transição plana e clara.

C 116 - 145+ cm; vermelho (10R 4/6 úmido); cinzento-claro (10YR 6/1 mosqueado); franco-siltosa; maciça que se desfaz em blocos angulares médios a grandes; muito duro, muito firme.

Raízes: Muitas e médias nos horizontes A1, A2, poucas e finas em BA, e raras e finas em Bt, BC e C.
TABELA 1. Análises físicas e químicas de um perfil de solo Alissolo Crômico argilúvico típico (Perfil 10).

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Frações da amostra total (%)</th>
<th>Composição granulométrica de terra fina (dispersão com NaOH) %</th>
<th>Argila dispersa em água (%)</th>
<th>Grau de flocação (%)</th>
<th>%Silte % Argila</th>
<th>Densidade g/cm³</th>
<th>Parosi - dade (volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Silte 0,2-0,05 mm</td>
<td>Húmico 0,05-0,002 mm</td>
<td>Húmico <0,002 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Areia 2-0,20 mm</td>
<td>Areia fina 0,20-0,05 mm</td>
<td>Areia fina >0,20 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calhau > 20 mm</td>
<td>Calhau 0,09 mm</td>
<td>Calhau 0,09 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Papel 0,07 mm</td>
<td>Papel 0,07 mm</td>
<td>Papel 0,07 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calamba 0,04 mm</td>
<td>Calamba 0,04 mm</td>
<td>Calamba 0,04 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calha 0,01 mm</td>
<td>Calha 0,01 mm</td>
<td>Calha 0,01 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>pH (1:2,5)</th>
<th>Complexo sortivo cmol./ 100 g</th>
<th>Valor V (sat. de bases) %</th>
<th>100. Al"+++ Al"+++ S</th>
<th>P-extravável mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>4.96</td>
<td>9.17</td>
<td>11.15</td>
<td>47.54</td>
<td>15.06</td>
</tr>
<tr>
<td>A2</td>
<td>4.77</td>
<td>9.12</td>
<td>11.38</td>
<td>47.54</td>
<td>15.06</td>
</tr>
<tr>
<td>AB</td>
<td>4.25</td>
<td>9.17</td>
<td>11.38</td>
<td>47.54</td>
<td>15.06</td>
</tr>
<tr>
<td>BA</td>
<td>4.32</td>
<td>9.17</td>
<td>11.38</td>
<td>47.54</td>
<td>15.06</td>
</tr>
<tr>
<td>C</td>
<td>4.60</td>
<td>9.17</td>
<td>11.38</td>
<td>47.54</td>
<td>15.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>C (orgânico) (dag/kg)</th>
<th>N (dag/kg)</th>
<th>C/N</th>
<th>Ataque por H₂SO₄ (1:1) %</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>TiO₂</th>
<th>P₂O₅</th>
<th>MnO</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>Fe₂O₃ livre (%)</th>
<th>Eqüivalência de CaCO₃ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2.09</td>
<td>0.23</td>
<td>9 : 0.23</td>
<td>6.8</td>
<td>2.5</td>
<td>5</td>
<td>3.5</td>
<td>0.33</td>
<td>36.5</td>
<td>4.2</td>
<td>4.0</td>
<td>2.85</td>
<td>19.2</td>
<td>11.3</td>
<td>5.4</td>
</tr>
<tr>
<td>A2</td>
<td>0.49</td>
<td>0.26</td>
<td>2 : 0.26</td>
<td>6.8</td>
<td>2.5</td>
<td>5</td>
<td>3.5</td>
<td>0.33</td>
<td>36.5</td>
<td>4.2</td>
<td>4.0</td>
<td>2.85</td>
<td>19.2</td>
<td>11.3</td>
<td>5.4</td>
</tr>
<tr>
<td>AB</td>
<td>0.42</td>
<td>0.06</td>
<td>13 : 0.06</td>
<td>6.8</td>
<td>2.5</td>
<td>5</td>
<td>3.5</td>
<td>0.33</td>
<td>36.5</td>
<td>4.2</td>
<td>4.0</td>
<td>2.85</td>
<td>19.2</td>
<td>11.3</td>
<td>5.4</td>
</tr>
<tr>
<td>BA</td>
<td>0.49</td>
<td>0.04</td>
<td>13 : 0.04</td>
<td>6.8</td>
<td>2.5</td>
<td>5</td>
<td>3.5</td>
<td>0.33</td>
<td>36.5</td>
<td>4.2</td>
<td>4.0</td>
<td>2.85</td>
<td>19.2</td>
<td>11.3</td>
<td>5.4</td>
</tr>
<tr>
<td>C</td>
<td>0.55</td>
<td>0.00</td>
<td>61 : 0.00</td>
<td>6.8</td>
<td>2.5</td>
<td>5</td>
<td>3.5</td>
<td>0.33</td>
<td>36.5</td>
<td>4.2</td>
<td>4.0</td>
<td>2.85</td>
<td>19.2</td>
<td>11.3</td>
<td>5.4</td>
</tr>
</tbody>
</table>
Número de campo: 6 - 3;
Perfil: 11 (Tabela 2);
Data: 24.1.1996;
Classificação: Alissolo Hipocrômico argilúvico típico;
Localização, município e Estado: Reserva Extrativista do Alto Juruá-Boca do Tejo, Marechal Thaumaturgo, Acre;
Litologia: Argilitos silticos e siltitos argilosos carbonatados;
Formação geológica: Formação Solimões;
Material originário: Sedimentos da Formação Solimões;
Pedregosidade: Não-pedregosa;
Rochosidade: Não-rochosa;
Relevo local: Ondulado;
Relevo regional: Forte ondulado;
Erosão: Não-aparente;
Drenagem: Moderadamente drenado;
Vegetação primária: Floresta tropical aberta com bambu;
Uso atual: Vegetação primária;
Descrito e coletado por: Antonio Willian Flores de Melo e Eufran Ferreira do Amaral.
Descrição morfológica

A1 0 - 12 cm; bruno (10YR 4/3 úmido); franco-siltosa; fraca médio blocos subangulares; macio a ligeiramente duro, muito friável a friável; transição plana e clara.

A2 12 - 35 cm; bruno-amarelado (10YR 5/4 úmido); franco-siltosa; fraca médio blocos subangulares; duro, friável; transição plana e clara.

AB 35 - 43 cm; bruno-amarelado (10YR 5/6 úmido); franco-siltosa; fraca médio blocos subangulares; duro, friável; transição plana e clara.

BA 43 - 59 cm; vermelho (2,5YR 5/6 úmido); cinzento (10YR 6/1 mosquedo); argilo-siltosa; fraca médio blocos subangulares; duro, firme; transição plana e clara.

Bt 59 - 96 cm; vermelho (2,5YR 5/8 úmido); cinzento (10YR 5/1 mosquedo); muito argilosa; maciça; duro, firme; transição plana e clara.

BC 96 - 116 cm; vermelho (2,5YR 5/8 úmido); cinzento (10YR 5/1 mosquedo); argila; maciça; duro, firme; transição plana e clara.

C 116 - 150+ cm; vermelho-escuro (2,5YR 3/6 úmido); cinzento-claro (10YR 7/1 mosquedo); argila; maciça; duro, firme.

Raízes: Muitas e finas a médias no horizontes A1, comuns em A2, poucas em AB, BA e Bt, raras em BC e C, finas a médias em A1 e finas em A1, A2, AB, BA, Bt, BC e C.
TABELA 2 - Análises físicas e químicas de um perfil de solo Alissolo Hipocrômico argilúvico típico (Perfil 11).

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Frações da amostra total (%)</th>
<th>Composição granulométrica de terra fina dispersão com NaOH (%)</th>
<th>Argila em água (%)</th>
<th>Grau de floculação (%)</th>
<th>%Silt</th>
<th>%Argila</th>
<th>Densidade g/cm³</th>
<th>Porosidade % (volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>4.05</td>
<td>5.51</td>
<td>23.4</td>
<td>16.8</td>
<td>3.1</td>
<td>3.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>A2</td>
<td>4.95</td>
<td>5.23</td>
<td>29.5</td>
<td>17.6</td>
<td>3.3</td>
<td>3.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>AB</td>
<td>4.36</td>
<td>5.17</td>
<td>29.2</td>
<td>17.6</td>
<td>3.3</td>
<td>3.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Bt</td>
<td>4.15</td>
<td>5.17</td>
<td>29.2</td>
<td>17.6</td>
<td>3.3</td>
<td>3.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>BC</td>
<td>4.36</td>
<td>5.20</td>
<td>29.5</td>
<td>17.6</td>
<td>3.3</td>
<td>3.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td>4.20</td>
<td>5.23</td>
<td>29.2</td>
<td>17.6</td>
<td>3.3</td>
<td>3.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>pH (1:2,5)</th>
<th>Complexo sortivo cmol+/100 g</th>
<th>Valor V (s. de bases) %</th>
<th>100. Al+++</th>
<th>P.extraivel mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>4.93</td>
<td>4.56</td>
<td>2.62</td>
<td>0.39</td>
<td>0.04</td>
</tr>
<tr>
<td>A2</td>
<td>4.46</td>
<td>3.94</td>
<td>2.52</td>
<td>0.39</td>
<td>0.04</td>
</tr>
<tr>
<td>AB</td>
<td>4.15</td>
<td>3.84</td>
<td>2.42</td>
<td>0.39</td>
<td>0.04</td>
</tr>
<tr>
<td>BA</td>
<td>4.23</td>
<td>3.77</td>
<td>2.42</td>
<td>0.39</td>
<td>0.04</td>
</tr>
<tr>
<td>BC</td>
<td>4.14</td>
<td>3.85</td>
<td>2.42</td>
<td>0.39</td>
<td>0.04</td>
</tr>
<tr>
<td>C</td>
<td>4.26</td>
<td>3.85</td>
<td>2.42</td>
<td>0.39</td>
<td>0.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C (orgânico) (dag/kg)</th>
<th>N (dag/kg)</th>
<th>C (dag/kg)</th>
<th>Ataque por H₂SO₄ (1:1) %</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>TiO₂</th>
<th>P₂O₅</th>
<th>MnO</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>Al₂O₃</th>
<th>Fe₂O₃ livre (%)</th>
<th>Equivalência de CaCO₃ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2.45</td>
<td>#</td>
<td>0.31</td>
<td>2.3</td>
<td>0.35</td>
<td>38.94</td>
<td>4.86</td>
<td>3.81</td>
<td>3.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>0.34</td>
<td>1</td>
<td>0.34</td>
<td>2.3</td>
<td>0.35</td>
<td>38.94</td>
<td>4.86</td>
<td>3.81</td>
<td>3.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>0.43</td>
<td>2</td>
<td>0.15</td>
<td>2.3</td>
<td>0.35</td>
<td>38.94</td>
<td>4.86</td>
<td>3.81</td>
<td>3.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>0.34</td>
<td>1</td>
<td>0.34</td>
<td>2.3</td>
<td>0.35</td>
<td>38.94</td>
<td>4.86</td>
<td>3.81</td>
<td>3.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>0.43</td>
<td>2</td>
<td>0.15</td>
<td>2.3</td>
<td>0.35</td>
<td>38.94</td>
<td>4.86</td>
<td>3.81</td>
<td>3.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.12</td>
<td>5</td>
<td>0.02</td>
<td>2.3</td>
<td>0.35</td>
<td>38.94</td>
<td>4.86</td>
<td>3.81</td>
<td>3.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Luvissolos (T)
Solos constituídos por material mineral com argila de atividade alta, saturação por bases alta e horizonte B textural ou nítico imediatamente abaixo de horizonte A fraco, ou moderado ou horizonte E, e satisfazendo os seguintes requisitos:

? horizonte plínico, se presente, não está acima ou não é coincidente com a parte superficial do horizonte B textural ou B nítico;

? horizonte glei, se ocorrer, não está acima do horizonte B textural ou B nítico e se inicia após 50 cm de profundidade, não coincide com a parte superficial destes horizontes.

Subordens registradas
Luvissolo Crômico órtico típico.
Luvissolo Hipocrômico órtico típico.

Descrição dos perfis

Número de campo: 1 - 1;
Perfil: 1 (Tabela 3);
Data: 11.12.1995;
Classificação: Luvissolo Crômico órtico típico;
Localização, município e Estado: Reserva Extrativista do Alto Juruá-Seringal São João, Marechal Thaumaturgo, Acre;
Litologia: Argilitos sílticos e siltitos argilosos carbonatados;
Formação geológica: Formação Solimões;
Material originário: Sedimentos da Formação Solimões;
Pedregosidade: Não-pedregosa;
Rochosidade: Não-rochosa;
Relevo local: Ondulado;
Relevo regional: Forte ondulado;
Erosão: Não-aparente;
Drenagem: Moderadamente drenado;
Vegetação primária: Floresta tropical aberta com palmeiras;
Uso atual: Floresta primária;
Descrito e coletado por: Antonio Willian Flores de Melo e Eufran Ferreira do Amaral.
Descrição morfológica

A1 0 - 05 cm; bruno-acinzentado muito escuro (10YR 3/2 úmido); franca; fraca muito pequeno bloco subangular; ligeiramente duro, muito friável; transição plana e clara.

A2 05 - 21 cm; bruno-amarelado-escuro (10YR 4/4 úmido); franco-argilo-arenosa; fraca pequeno blocos subangulares; ligeiramente duro, friável; transição plana e clara.

BA 21 - 31 cm; bruno-forte (7,5YR 4/6 úmido); franco-argilosa; moderada médio blocos subangulares; duro, friável; transição plana e clara.

Bt 31 - 68 cm; vermelho-amarelado (5YR 4/6 úmido); argila; moderada médio blocos angulares e subangulares; muito duro, firme; transição gradual e plana.

C 68 - 100+ cm; vermelho-amarelado (5YR 5/6 úmido); cinzento-claro (10YR 6/1 mosqueado); argila; moderada médio blocos angulares e subangulares; muito duro, firme.
TABELA 3 . Análises físicas e químicas de um perfil de solo Luvissolo Crômico órtico típico (Perfil 1).

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Frações da amostra total (%)</th>
<th>Composição granulométrica de terra fina (dispersão com NaOH) %</th>
<th>Argila dispersa em água (%)</th>
<th>Grau de floculação (%)</th>
<th>%Silte</th>
<th>%Argila</th>
<th>Densidade g/cm³</th>
<th>Porosidade % (volume)</th>
<th>Porosidade % (volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>8 %</td>
<td>8.2 38.3 36.1 2.5</td>
<td>25.5</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>21.31</td>
<td>38.3 20.9 16.9 23.3</td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>31.68</td>
<td>3.2 7.9 34.6 54.9</td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>88 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizonte</td>
<td>pH (1:2,5)</td>
<td>Complexo solino cmol+/ 100</td>
<td>Valor V (sal. de bases) %</td>
<td>P.extrav. mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>5.85</td>
<td>5.44 14.23 3.19 17.85</td>
<td>80.91 19.09 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>4.70</td>
<td>4.08 2.98 10.82 2.5</td>
<td>76.40 95.37 19.38 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>4.51</td>
<td>3.92 1.03 10.27 1.04 1.04 15.80 94.25 40.85 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bt</td>
<td>4.47</td>
<td>3.63 14.23 5.63 3.07 20.28 15.11 3.93 26.72 55.23 42.76 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.51</td>
<td>3.62 11.78 9.23 1.08 21.38 20.80 0.92 42.20 50.67 48.91 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizonte</td>
<td>C (orgânico) (dag/kg)</td>
<td>N (dag/kg)</td>
<td>SiO₂ Al₂O₃ Fe₂O₃ TiO₂ P₂O₅ MnO E²O₄ Al₂O₃ Fe₂O₃ livre (%)</td>
<td>Equivalência de CaCO₃ (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>2.20</td>
<td>15 0.45 7.2 3.6 2.1 0.35 27.48 4.68 2.82 2.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>0.35</td>
<td>9 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>0.37</td>
<td>8 0.05</td>
<td>24.4 14.6 6.5 0.5 4.58 2.84 2.21 3.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bt</td>
<td>0.26</td>
<td>17 0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.30</td>
<td>21 0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Número de campo: 1 - 2;
Perfíl: 4 (Tabela 4);
Data: 15.12.1995;
Classificação: Luvissolo Hipocrômico órtico;
Podzólico Vermelho-Amarelo eutrófico Ta A moderado textura média fase de Floresta tropical aberta com palmeiras relevo ondulado;
Localização, município e Estado: Reserva Extrativista do Alto Juruá-Seringal
Restauração, Marechal Thaumaturgo, Acre;
Litologia: Argilitos silticos e siltitos argilosos carbonatados;
Formação geológica: Formação Solimões;
Material originário: Sedimentos da Formação Solimões;
Pedregosidade: Não-pedregosa;
Rochosidade: Não-rochosa;
Relevo local: Ondulado;
Relevo regional: Forte ondulado;
Erosão: Não-aparente;
Drenagem: Bem drenado;
Vegetação primária: Floresta tropical aberta com palmeiras;
Uso atual: Floresta primária;
Descrito e coletado por: Antonio Willian Flores de Melo e Eufran Ferreira do Amaral.
Descrição morfológica

A1 0 - 05 cm; bruno-escuro (7,5YR 3/2); franca; fraca muito pequeno blocos subangulares; muito duro, plástico, ligeiramente pegajoso; transição plana.

AB 05 - 17 cm; bruno (10YR 4/3 úmido); franca; fraca pequeno blocos subangulares; muito duro, plástico, ligeiramente pegajoso; transição plana.

BA 17 - 36 cm; bruno-amarelado-escuro (10YR 4/4 úmido); franco-argilosa; maciça; muito duro, plástico, ligeiramente pegajoso; transição plana.

Bt 36 - 100+ cm; bruno-amarelado (10YR 5/4 úmido); argilo-siltosa; maciça; extremamente duro, plástico, pegajoso.

Raízes: Abundantes e finas no horizonte A1, muitas e finas em AB, comuns e finas em BA e poucas e grossas em Bt.
TABELA 4. Análises físicas e químicas de um perfil de solo Luvissolo Hipocrômico órtico típico (Perfil 4).

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Frações da amostra total (%)</th>
<th>Composição granulométrica de terra fina dispersão com NaOH (%)</th>
<th>Argila dispersa em água (%)</th>
<th>Grau de floculação (%)</th>
<th>%Silte</th>
<th>Argila</th>
<th>Densidade g/cm³</th>
<th>Porosidade % (volume)</th>
<th>Parosidade</th>
<th>pH (1:2,5)</th>
<th>% C (orgânico) (dag/kg)</th>
<th>% N (dag/kg)</th>
<th>C/N</th>
<th>Ataque por H₂SO₄ (1:1) - %</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>Fe₂O₃ livre (%)</th>
<th>Equivalência de CaCO₃ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0.5</td>
<td>Cálculo > 20 mm</td>
<td>Calçalho 20-2 mm</td>
<td>Tera fina <2mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.61</td>
<td>5.79</td>
<td>4.30</td>
<td>0.11</td>
<td>16.39</td>
<td>3.05</td>
<td>0.49</td>
<td>0.08</td>
<td>30.49</td>
<td>52.68</td>
</tr>
<tr>
<td>AB</td>
<td>1.17</td>
<td>26.3</td>
<td>18.8</td>
<td>29.7</td>
<td>26.1</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td>4.38</td>
<td>5.60</td>
<td>4.18</td>
<td>0.08</td>
<td>16.65</td>
<td>3.06</td>
<td>0.22</td>
<td>0.06</td>
<td>19.98</td>
<td>53.85</td>
</tr>
<tr>
<td>BA</td>
<td>1.36</td>
<td>13.0</td>
<td>16.2</td>
<td>32.4</td>
<td>38.4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td>3.91</td>
<td>5.01</td>
<td>4.95</td>
<td>0.10</td>
<td>26.16</td>
<td>4.49</td>
<td>0.23</td>
<td>0.17</td>
<td>30.95</td>
<td>55.75</td>
</tr>
<tr>
<td>Bt</td>
<td>36-100</td>
<td>4.5</td>
<td>8.5</td>
<td>18.5</td>
<td>46.2</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>4.89</td>
<td>5.51</td>
<td>35.91</td>
<td>0.23</td>
<td>33.91</td>
<td>5.23</td>
<td>0.29</td>
<td>0.13</td>
<td>35.82</td>
<td>56.75</td>
</tr>
</tbody>
</table>

Horizonte | pH (1:2,5) | Complexo cátions | Valores V (cal. De bases) % | 100. Al⁺⁺⁺ | P. extraível mg/kg |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>4.61</td>
<td>5.79</td>
<td>16.39</td>
<td>3.05</td>
<td>4.30</td>
</tr>
<tr>
<td>AB</td>
<td>4.38</td>
<td>5.60</td>
<td>16.65</td>
<td>3.06</td>
<td>4.18</td>
</tr>
<tr>
<td>BA</td>
<td>3.91</td>
<td>5.01</td>
<td>26.16</td>
<td>4.49</td>
<td>4.95</td>
</tr>
<tr>
<td>Bt</td>
<td>4.89</td>
<td>5.51</td>
<td>35.91</td>
<td>5.23</td>
<td>35.82</td>
</tr>
</tbody>
</table>

Horizonte | C (orgânico) (dag/kg) | N (dag/kg) | C/N | Ataque por H₂SO₄ (1:1) - % | SiO₂ | Al₂O₃ | Fe₂O₃ | Fe₂O₃ livre (%) | Equivalência de CaCO₃ (%) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>3.94</td>
<td>18</td>
<td>0.17</td>
<td>10.1</td>
<td>3.6</td>
<td>2.3</td>
<td>0.26</td>
<td>52.7</td>
<td>4.52</td>
</tr>
<tr>
<td>AB</td>
<td>0.92</td>
<td>13</td>
<td>0.07</td>
<td>4.1</td>
<td>3.3</td>
<td>2.5</td>
<td>0.26</td>
<td>23.4</td>
<td>4.52</td>
</tr>
<tr>
<td>BA</td>
<td>0.70</td>
<td>22</td>
<td>0.03</td>
<td>11.1</td>
<td>3.4</td>
<td>2.5</td>
<td>0.26</td>
<td>32.66</td>
<td>4.52</td>
</tr>
<tr>
<td>Bt</td>
<td>0.33</td>
<td>31</td>
<td>0.01</td>
<td>23.1</td>
<td>5.9</td>
<td>2.5</td>
<td>0.26</td>
<td>2.93</td>
<td>2.28</td>
</tr>
</tbody>
</table>
Número de campo: 3 - 3;
Perfil: 8 (Tabela 5);
Data: 19.1.1996;
Classificação: Luvißolo Hipocrômico õrtico;
Localização, município e Estado: Reserva Extrativista do Alto Juruá-Seringal Remanso/Rio Bajé, Marechal Thaumaturgo, Acre;
Litologia: Argilitos silticos e siltitos argilosos carbonatados;
Formação geológica: Formação Solimões;
Material originário: Sedimentos da Formação Solimões;
Pedregosidade: Não-pedregosa;
Rochosidade: Não-rochosa;
Relevo local: Ondulado;
Relevo regional: Forte ondulado;
Erosão: Não-aparente;
Drenagem: Bem drenado;
Vegetação primária: Floresta tropical aberta com bambu;
Uso atual: Floresta primária;
Descrito e coletado por: Antonio Willian Flores de Melo e Eufran Ferreira do Amaral.
Descrição morfológica

A1 0 - 16 cm; bruno-escuro (10YR 3/3 úmido); franca; fraca pequeno a médios blocos subangulares; duro, muito friável; transição plana e clara.

AB 16 - 25 cm; bruno (10YR 4/3 úmido); franco-argilosa; fraca pequenos a médio blocos subangulares; muito duro, muito friável a friável; transição plana e clara.

BA 25 - 31 cm; bruno-amarelado-escuro (10YR 4/4 úmido); argila; moderada médio blocos subangulares; muito duro, friável; transição plana e clara.

Bt1 31 - 55 cm; bruno-amarelado-escuro (10YR 4/4 úmido); argila; moderada grande blocos subangulares; muito duro, friável; transição plana e clara.

Bt2 55 - 75 cm; bruno-forte (7,5YR 4/6 úmido); argila; moderada grande blocos subangulares; extremamente duro, firme; plana e clara.

C 75 - 110+ cm, bruno-amarelado (10YR 5/4 úmido); argila; maciça; extremamente duro, firme.

Raízes: muitas nos horizontes A1, AB, BA, muitas em Bt1, raras em Bt2 e C, finas a médias em A1 e AB, e finas em BA, Bt1, Bt2 e C.
TABELA 5 . Análises físicas e químicas de um perfil de solo Luvissolo Hipocrômico ortic típico (Perfil 8).

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Frações da amostra total (%)</th>
<th>Composição granulométrica de terra fina (dispersão com NaOH)</th>
<th>Argila dispersa em água (%)</th>
<th>Nível %</th>
<th>Órgano</th>
<th>Densidade g/cm³</th>
<th>Porosidade %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>14.8</td>
<td>19.3</td>
<td>43.1</td>
<td>22.8</td>
<td></td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>15.1</td>
<td>22.9</td>
<td>29.6</td>
<td></td>
<td></td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>8.6</td>
<td>11.0</td>
<td>36.8</td>
<td>44.0</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bt1</td>
<td>7.5</td>
<td>8.5</td>
<td>37.3</td>
<td>52.0</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bt2</td>
<td>9.5</td>
<td>10.5</td>
<td>30.2</td>
<td>49.8</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>8.5</td>
<td>22.3</td>
<td>20.5</td>
<td>48.7</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>pH (1:2,5)</th>
<th>Complexo sortivo cmol / 100 g</th>
<th>V. V. (s/al de bases)</th>
<th>100% Al³⁺</th>
<th>P.extrav mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>5.18</td>
<td>4.84</td>
<td>10.16</td>
<td>2.91</td>
<td>0.16</td>
</tr>
<tr>
<td>AB</td>
<td>4.87</td>
<td>4.17</td>
<td>12.87</td>
<td>2.97</td>
<td>0.13</td>
</tr>
<tr>
<td>BA</td>
<td>4.54</td>
<td>3.88</td>
<td>15.99</td>
<td>5.33</td>
<td>0.16</td>
</tr>
<tr>
<td>Bt1</td>
<td>4.25</td>
<td>3.93</td>
<td>13.97</td>
<td>5.79</td>
<td>0.18</td>
</tr>
<tr>
<td>Bt2</td>
<td>4.25</td>
<td>3.93</td>
<td>13.97</td>
<td>5.79</td>
<td>0.18</td>
</tr>
<tr>
<td>C</td>
<td>4.57</td>
<td>3.86</td>
<td>15.71</td>
<td>5.35</td>
<td>0.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>C (organico) (dag/kg)</th>
<th>C N (dag/kg)</th>
<th>Adubo por H₂SO₄ (1:1) %</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>P₂O₅</th>
<th>MnO</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>Fe₂O₃ w/e (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1.86</td>
<td>16.12</td>
<td>3.93</td>
<td>3.53</td>
<td>2.3</td>
<td>0.29</td>
<td>23.98</td>
<td>4.81</td>
<td>3.95</td>
<td>3.89</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>0.77</td>
<td>21.94</td>
<td>3.93</td>
<td>3.53</td>
<td>2.3</td>
<td>0.29</td>
<td>23.98</td>
<td>4.81</td>
<td>3.95</td>
<td>3.89</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>0.41</td>
<td>36.01</td>
<td>3.93</td>
<td>3.53</td>
<td>2.3</td>
<td>0.29</td>
<td>23.98</td>
<td>4.81</td>
<td>3.95</td>
<td>3.89</td>
<td></td>
</tr>
<tr>
<td>Bt1</td>
<td>0.54</td>
<td>53.03</td>
<td>3.93</td>
<td>3.53</td>
<td>2.3</td>
<td>0.29</td>
<td>23.98</td>
<td>4.81</td>
<td>3.95</td>
<td>3.89</td>
<td></td>
</tr>
<tr>
<td>Bt2</td>
<td>0.46</td>
<td>113.00</td>
<td>3.93</td>
<td>3.53</td>
<td>2.3</td>
<td>0.29</td>
<td>23.98</td>
<td>4.81</td>
<td>3.95</td>
<td>3.89</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.19</td>
<td>195.00</td>
<td>3.93</td>
<td>3.53</td>
<td>2.3</td>
<td>0.29</td>
<td>23.98</td>
<td>4.81</td>
<td>3.95</td>
<td>3.89</td>
<td></td>
</tr>
</tbody>
</table>
Perfil: 72 (Tabela 6);
Classificação: Luvisolo Hipocrômico órtico;
Localização: Município de Cruzeiro do Sul-AC. Lat. 9º 13’ S e Long. 72º 26’ WGr. Folha SC. 18-X-D;
Situacao, declividade e erosão: Meia encosta, com declive de 7% e erosão laminar moderada;
Material originário: Sedimentos da Formação Solimões (Plio-Pleistoceno);
Relevo: Ondulado;
Drenagem: Moderadamente drenado;
Cobertura vegetal: Floresta aberta;
Descrito e coletado por: Brasil (1977).

Descrição morfológica

<table>
<thead>
<tr>
<th>Específico</th>
<th>Densidade</th>
<th>Cor</th>
<th>Textura</th>
<th>Difeção</th>
<th>Estado</th>
<th>Transição</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 - 7 cm</td>
<td>brun a bruno-escuro (10YR 3/3)</td>
<td>franco; fraca muito pequena granular e blocos subangulares; friável, plástico e pegajoso; transição difusa.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>7 - 20 cm</td>
<td>brun a bruno-escuro (10YR 4/3); franco-argiloso; fraca muito pequena granular e blocos subangulares; friável; plástico e pegajoso; transição gradual.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>20 - 40 cm</td>
<td>brun a amarelo-escuro (10YR 4/4); argila; maciça; firme, plástico e pegajoso; transição gradual.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>40 - 65 cm</td>
<td>brun (10YR 5/3); argila; maciça; firme, muito plástico e pegajoso; transição difusa.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>65 - 85 cm</td>
<td>brun (10YR 5/3); argila; maciça; firme, muito plástico e pegajoso; transição plana e difusa.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>85 - 100+ cm</td>
<td>brun a amarelo (10YR 5/6); mosqueado pouco pequeno difuso cinzento-claro (10YR 7/2); argila; maciça; firme; muito plástico e pegajoso.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Raízes: Comuns no A1 e A3.
TABELA 6 - Análises físicas e químicas de um perfil de solo Luvissolo Hipocrômico Òrtico típico (Perfil 72).

<table>
<thead>
<tr>
<th>Horizontes</th>
<th>Símbolo</th>
<th>Prof. (cm)</th>
<th>Esqueleto (% (> 2mm))</th>
<th>Areia muito grossa 2-1mm</th>
<th>Areia grossa 1-0,5mm</th>
<th>Areia média 0,5-0,25mm</th>
<th>Areia fina 0,25-0,10mm</th>
<th>Areia muito fina <0,10-0,05mm</th>
<th>Silte 0,05-0,002mm</th>
<th>Argila < 0,002mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0-07</td>
<td>0.1</td>
<td>0.2</td>
<td>2.4</td>
<td>23.1</td>
<td>8.1</td>
<td>37.5</td>
<td>28.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>07-20</td>
<td>0.1</td>
<td>0.2</td>
<td>2.1</td>
<td>20.5</td>
<td>5.8</td>
<td>35.7</td>
<td>35.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>20-40</td>
<td>0.1</td>
<td>0.3</td>
<td>3.6</td>
<td>14.4</td>
<td>6.9</td>
<td>31.1</td>
<td>44.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>40-65</td>
<td>0.1</td>
<td>0.3</td>
<td>3.1</td>
<td>11.7</td>
<td>6.9</td>
<td>30.3</td>
<td>47.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>65-95</td>
<td>0.1</td>
<td>0.3</td>
<td>3.1</td>
<td>9.4</td>
<td>9.4</td>
<td>36.1</td>
<td>49.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>95-110</td>
<td>-</td>
<td>0.3</td>
<td>3.3</td>
<td>9.4</td>
<td>9.4</td>
<td>36.1</td>
<td>49.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizontes</th>
<th>Argila natural (%)</th>
<th>Argila floculação (%)</th>
<th>pH</th>
<th>C</th>
<th>MO</th>
<th>Óxido de Fe2O3</th>
<th>PO4</th>
<th>Ac. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13.02</td>
<td>1.06</td>
<td>5.9</td>
<td>5.2</td>
<td>2.4</td>
<td>4.13</td>
<td>0.85</td>
<td>0.06</td>
</tr>
<tr>
<td>AB</td>
<td>16.67</td>
<td>1.00</td>
<td>5.9</td>
<td>4.8</td>
<td>0.9</td>
<td>1.56</td>
<td>1.00</td>
<td>0.02</td>
</tr>
<tr>
<td>B</td>
<td>1.10</td>
<td>1.00</td>
<td>5.9</td>
<td>6.3</td>
<td>0.5</td>
<td>1.51</td>
<td>1.16</td>
<td>0.01</td>
</tr>
<tr>
<td>B1</td>
<td>2.59</td>
<td>0.67</td>
<td>6.4</td>
<td>5.3</td>
<td>0.3</td>
<td>0.51</td>
<td>1.09</td>
<td>0.01</td>
</tr>
<tr>
<td>B2</td>
<td>4.54</td>
<td>0.62</td>
<td>6.5</td>
<td>5.3</td>
<td>0.3</td>
<td>0.51</td>
<td>1.02</td>
<td>0.02</td>
</tr>
<tr>
<td>BC</td>
<td>10.10</td>
<td>0.72</td>
<td>7.0</td>
<td>5.3</td>
<td>0.2</td>
<td>0.34</td>
<td>1.18</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizontes</th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>Na</th>
<th>NaHCO3</th>
<th>V</th>
<th>100. Al+++</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28.61</td>
<td>3.84</td>
<td>0.28</td>
<td>0.13</td>
<td>32.64</td>
<td>2.51</td>
<td>35.60</td>
</tr>
<tr>
<td>AB</td>
<td>29.19</td>
<td>3.41</td>
<td>0.19</td>
<td>0.19</td>
<td>32.91</td>
<td>2.20</td>
<td>34.45</td>
</tr>
<tr>
<td>B</td>
<td>33.67</td>
<td>3.57</td>
<td>0.18</td>
<td>0.26</td>
<td>37.49</td>
<td>1.94</td>
<td>36.38</td>
</tr>
<tr>
<td>B1</td>
<td>36.95</td>
<td>3.76</td>
<td>0.18</td>
<td>0.37</td>
<td>40.85</td>
<td>1.03</td>
<td>39.17</td>
</tr>
<tr>
<td>B2</td>
<td>53.27</td>
<td>4.78</td>
<td>0.15</td>
<td>0.53</td>
<td>38.68</td>
<td>1.00</td>
<td>34.02</td>
</tr>
<tr>
<td>BC</td>
<td>33.80</td>
<td>5.55</td>
<td>0.14</td>
<td>0.70</td>
<td>39.99</td>
<td>0.97</td>
<td>31.77</td>
</tr>
</tbody>
</table>
Perfil: 73 (Tabela 7);
Classificação: Luvisolo Hipocrômico órtico;
Localização: Município de Cruzeiro do Sul-AC. Lat. 9º 16’ S e Long. 72º 45’
WGr. Folha SC. 18-X-D;
Situação, declividade e erosão: Terço superior de encosta com declive de
8% e erosão laminar moderada;
Material originário: Sedimentos da Formação Solimões (Plio-Pleistoceno);
Relevo: Ondulado;
Drenagem: Bem drenado;
Cobertura vegetal: Floresta aberta;
Descrito e coletado por: Brasil (1977).

Descrição morfológica

A 0 - 8 cm; bruno-escuro (10YR 3/3); franco; moderada muito pequena a média granular; muito friável, ligeiramente plástico e ligeiramente pegajoso; transição difusa.

AB 8 - 30 cm; bruno a bruno-escuro (10YR 4/3); franco; fraca muito pequena granular e blocos subangulares; friável, plástico e pegajoso; transição difusa.

BA 30 - 50 cm; bruno-amarelado-escuro (10YR 4/4); franco-argiloso; moderada muito pequena a pequena blocos subangulares; friável, plástico e pegajoso; transição gradual.

B1 5 - 65 cm, bruno (7,5YR 5/4); franco-argiloso; fraca muito pequena a pequena blocos subangulares; friável, plástico e pegajoso; transição difusa.

BC 65 - 100 cm; bruno (7,5YR 5/4); franco-argiloso; fraca muito pequena blocos subangulares; friável, plástico e pegajoso; transição difusa.

C 100 - 160+ cm; bruno a bruno-escuro (7,5YR 4/4); franco-arenoso; fraca, muito pequena, blocos subangulares; friável, plástico e pegajoso.

Raízes: Muitas no A1, comuns no A3 e B1, poucas no B2.
TABELA 7. Análises físicas e químicas de um perfil de solo Luvissolo Hipocrômico Órtico típico (Perfil 73).

<table>
<thead>
<tr>
<th>Horizontes</th>
<th>Altura (cm)</th>
<th>Composição granulométrica (TFSA) %</th>
<th>% (> 2mm)</th>
<th>Areia muito grossa 2-1mm</th>
<th>Areia grossa 1-0,5 mm</th>
<th>Areia média 0,5-0,25 mm</th>
<th>Areia fina 0,25-0,10 mm</th>
<th>Areia muito fina 0,10-0,05 mm</th>
<th>Silt 0,05-0,002 mm</th>
<th>Argila < 0,002 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0-8</td>
<td>-</td>
<td>0.1</td>
<td>1.1</td>
<td>30.1</td>
<td>10.1</td>
<td>42.5</td>
<td>16.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>8-30</td>
<td>-</td>
<td>0.4</td>
<td>8.0</td>
<td>30.7</td>
<td>13.7</td>
<td>31.0</td>
<td>24.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>30-50</td>
<td>-</td>
<td>0.4</td>
<td>34.2</td>
<td>9.7</td>
<td>26.0</td>
<td>27.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>50-65</td>
<td>-</td>
<td>0.4</td>
<td>30.5</td>
<td>9.7</td>
<td>9.7</td>
<td>31.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>65-100</td>
<td>-</td>
<td>0.4</td>
<td>28.8</td>
<td>11.8</td>
<td>39.9</td>
<td>26.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>100-150</td>
<td>-</td>
<td>2.9</td>
<td>44.0</td>
<td>10.6</td>
<td>24.3</td>
<td>18.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizontes</th>
<th>Argila natural (%)</th>
<th>Grau de floculação (%)</th>
<th>Silt</th>
<th>Argila</th>
<th>Umidade equivalente (%)</th>
<th>pH</th>
<th>C dag/kg</th>
<th>MO dag/kg</th>
<th>Oxid do ferro livre-P₂O₅ %</th>
<th>P₂O₅ cmol/100g</th>
<th>Ac. Total (CaOAc) Me/100g</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8.5</td>
<td>47</td>
<td>2.63</td>
<td>5.3</td>
<td>4.9</td>
<td>3.4</td>
<td>5.86</td>
<td>0.87</td>
<td>0.19</td>
<td>4.38</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>11.42</td>
<td>53</td>
<td>1.28</td>
<td>5.2</td>
<td>4.1</td>
<td>0.8</td>
<td>1.37</td>
<td>0.83</td>
<td>0.02</td>
<td>3.54</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>12.92</td>
<td>50</td>
<td>1.01</td>
<td>5.1</td>
<td>4.7</td>
<td>0.9</td>
<td>0.98</td>
<td>0.87</td>
<td>0.02</td>
<td>4.28</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>2.70</td>
<td>91</td>
<td>0.90</td>
<td>5.1</td>
<td>3.5</td>
<td>0.4</td>
<td>0.88</td>
<td>0.92</td>
<td>0.02</td>
<td>5.56</td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>1.88</td>
<td>93</td>
<td>1.16</td>
<td>5.2</td>
<td>3.5</td>
<td>0.2</td>
<td>0.34</td>
<td>0.90</td>
<td>0.07</td>
<td>5.06</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.67</td>
<td>86</td>
<td>1.49</td>
<td>5.3</td>
<td>3.9</td>
<td>0.1</td>
<td>0.11</td>
<td>0.75</td>
<td>0.44</td>
<td>2.84</td>
<td></td>
</tr>
</tbody>
</table>

| Horizontes | Ca** | Mg** | K+ | Na+ | Valor S (soma) | H++ | Al+++ | Valor T (soma) | V % | 100: Al+++%
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>21.46</td>
<td>4.44</td>
<td>0.36</td>
<td>0.13</td>
<td>26.39</td>
<td>3.88</td>
<td>0.50</td>
<td>30.77</td>
<td>86</td>
<td>2</td>
</tr>
<tr>
<td>AB</td>
<td>17.08</td>
<td>4.03</td>
<td>0.12</td>
<td>0.14</td>
<td>21.37</td>
<td>2.58</td>
<td>0.56</td>
<td>24.31</td>
<td>86</td>
<td>3</td>
</tr>
<tr>
<td>BA</td>
<td>23.28</td>
<td>5.39</td>
<td>0.12</td>
<td>0.23</td>
<td>29.03</td>
<td>2.91</td>
<td>1.45</td>
<td>33.39</td>
<td>87</td>
<td>6</td>
</tr>
<tr>
<td>B1</td>
<td>26.86</td>
<td>6.75</td>
<td>0.12</td>
<td>0.32</td>
<td>34.19</td>
<td>2.43</td>
<td>3.13</td>
<td>39.75</td>
<td>86</td>
<td>9</td>
</tr>
<tr>
<td>BC</td>
<td>29.77</td>
<td>6.46</td>
<td>0.10</td>
<td>0.40</td>
<td>36.73</td>
<td>1.28</td>
<td>3.38</td>
<td>41.79</td>
<td>88</td>
<td>9</td>
</tr>
<tr>
<td>C</td>
<td>29.77</td>
<td>6.26</td>
<td>0.09</td>
<td>0.50</td>
<td>36.70</td>
<td>2.21</td>
<td>1.92</td>
<td>40.44</td>
<td>91</td>
<td>9</td>
</tr>
</tbody>
</table>

Legend:
- **A:** A horizon
- **AB:** AB horizon
- **BA:** BA horizon
- **B1:** B1 horizon
- **BC:** BC horizon
- **C:** C horizon

Notes:
- TFSA: Texture-Field Soil Analysis
- **:** = %
- Soma: Total
- Ac. Total: Acid Total
- Me/100g: Milligrams per 100 grams

Explanation:
- **Horizontes:** Different layers of the soil profile.
- **Altura (cm):** Height in centimeters.
- **Composição granulométrica (TFSA) %:** Soil texture analysis.
- **% (> 2mm):** Percentage of particles greater than 2mm.
- **Horizontes Argila natural (%)**
- **Grau de floculação (%)**
- **Silt**
- **Argila**
- **Umidade equivalente (%)**
- **pH**
- **C dag/kg**
- **MO dag/kg**
- **Oxid do ferro livre-P₂O₅ %**
- **P₂O₅ cmol/100g**
- **Ac. Total (CaOAc) Me/100g**

Additional Notes:
- **Ca** and **Mg** are expressed as milligrams per 100 grams.
- **K+**, **Na+**, **Valor S**, **H++**, **Al+++**, and **Valor T** are expressed as milligrams per gram.
- **V %** and **100: Al+++%** indicate the percentage values.

Further Analysis:
- The table provides detailed information on soil characteristics, including texture, pH, nutrient content, and cation exchange capacity, which are crucial for understanding soil fertility and land management practices.
Perfil: 76 (Tabela 8);
Classificação: Luvissolo Hipocrômico órtico;
Localização: Município de Cruzeiro do Sul-AC. Lat. 9º 23’ S e Long. 72º 26’ WGr. Folha SC. 18-X-D;
Situação, declividade e erosão: Terço superior de encosta com declive de 15% e erosão laminar ligeira;
Material originário: Sedimentos da Formação Solimões (Plio-Pleistoceno);
Relevo: Forte ondulado;
Drenagem: Moderadamente drenado;
Cobertura vegetal: Floresta aberta;
Descrito e coletado por: Brasil (1977).

Descrição morfológica

A 0 - 10 cm; bruno-escuro (10YR 3/3); franco; moderada muito pequena a média granular; muito friável, plástico e pegajoso; transição difusa.

AB 20 - 30 cm; bruno a bruno-escuro (10YR 4/3); franco-argiloso; fraca muito pequena granular e blocos subangulares; friável; plástico e pegajoso; transição gradual.

B1 30 - 50 cm; bruno a bruno-escuro (10YR 4/3); franco-argiloso; fraca muito pequena granular e blocos subangulares; friável, plástico e pegajoso; transição difusa.

B2 50 - 60 cm, bruno (7,5YR 5/4); franco-argiloso; fraca muito pequena granular e blocos subangulares; friável, plástico e pegajoso; transição difusa.

BC 60 - 100 cm; bruno (7,5YR 5/4); mosqueado pouco pequeno distinto amarelo-brunado (10YR 6/8); e pouco pequeno distinto cinzento-claro (10YR 7/2); franco-argiloso; fraca muito pequena granular e blocos subangulares; friável, plástico e pegajoso; transição difusa.

C 100 - 140+ cm; bruno (7,5YR 5/4); mosqueado abundante médio e grande distinto cinzento-claro (10YR 7/2); e pouco pequeno distinto bruno-amarelado-claro (10YR 6/4); franco-argiloso; fraca pequena blocos subangulares; friável, plástico e pegajoso.

Raízes: Comuns médias e finas no A1 e A3.
TABELA 8. Análises físicas e químicas de um perfil de solo Luvissolo Hipocrômico órtico típico (Perfil 76).

| Horizonte | Composição granulométrica (TFSA) % | Símbolo | Profundidade em cm | Esqueleto Composição granulométrica (> 2 mm) | % (> 2mm) | Areia muito grossa | 2-1mm | Areia grossa | 1-0,5 mm | Areia média | 0,5-0,25 mm | Areia fina | 0,25-0,10 mm | Areia muito fina | 0,10-0,05 mm | Silte | 0,05-0,002 mm | Arenito | 0,002 mm |
|------------|-------------------------------------|---------|--------------------|--|----------|--------------------|------|--------------------|------|--------------------|------|--------------------|------|--------------------|------|--------------------|------|--------------------|
| A | | 0-10 | 0.1 | 0.2 | 0.3 | 21.7 | 11.9 | 41.7 | 24.3 |
| AB | | 10-30 | 0.1 | 0.2 | 0.3 | 21.7 | 11.9 | 41.7 | 24.3 |
| B1 | | 30-50 | - | 0.1 | 0.2 | 24.2 | 11.4 | 36.7 | 37.4 |
| B2 | | 50-60 | - | 0.1 | 0.2 | 25.6 | 14.3 | 37.7 | 37.7 |
| BC | | 60-100 | - | 0.1 | 0.2 | 13.5 | 10.9 | 36.9 | 39.1 |
| C | | 60-140 | - | 0.1 | 0.2 | 14.9 | 7.9 | 37.2 | 39.9 |

| Horizontes | Argila natural (%) | Grau de floculação (%) | pH Argila | Unidade equivalente (%) | H₂O | KCl/N | C | Al₂O₃ | H₂O | KO²⁺ | Na⁺ | Ca²⁺ | Mg²⁺ | K⁺ | Na⁺ | Ca²⁺ | Mg²⁺ | Na⁺ |
|------------|--------------------|------------------------|-----------|-------------------------|-----|-------|---|------|-----|------|-----|------|
| A | 11.27 | 54 | 1.71 | 5.5 | 4.8 | 2.1 | 3.62 | 0.67 | 0.04 | 3.56 |
| AB | 14.32 | 57 | 1.06 | 4.9 | 3.6 | 0.7 | 1.20 | 0.77 | 0.03 | 5.68 |
| B1 | 1.12 | 96 | 0.11 | 4.2 | 3.4 | 0.4 | 0.79 | 0.93 | 0.12 | 7.93 |
| B2 | 1.18 | 97 | 0.71 | 4.3 | 3.4 | 0.3 | 0.51 | 0.85 | 0.05 | 7.94 |
| BC | 1.19 | 97 | 0.92 | 5.0 | 3.5 | 0.1 | 0.17 | 0.92 | 0.27 | 5.84 |
| C | 1.31 | 95 | 0.93 | 5.4 | 3.5 | 0.1 | 0.11 | 0.78 | 0.53 | 4.38 |

<table>
<thead>
<tr>
<th>Horizontes</th>
<th>Complexo cátions cmol/100g</th>
<th>%</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>K⁺</th>
<th>Na⁺</th>
<th>Al³⁺</th>
<th>Valor T (soma)</th>
<th>V</th>
<th>Al³⁺</th>
<th>%</th>
<th>Al³⁺</th>
<th>%</th>
<th>Al³⁺</th>
<th>%</th>
<th>Al³⁺</th>
<th>%</th>
<th>Al³⁺</th>
<th>%</th>
<th>Al³⁺</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>21.46</td>
<td>4.13</td>
<td>0.23</td>
<td>0.11</td>
<td>28.39</td>
<td>3.13</td>
<td>0.43</td>
<td>28.49</td>
<td>88</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>22.67</td>
<td>3.69</td>
<td>0.20</td>
<td>0.13</td>
<td>28.39</td>
<td>3.21</td>
<td>1.87</td>
<td>31.97</td>
<td>84</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>22.97</td>
<td>3.51</td>
<td>0.16</td>
<td>0.22</td>
<td>28.76</td>
<td>1.87</td>
<td>5.63</td>
<td>34.26</td>
<td>78</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>24.37</td>
<td>3.41</td>
<td>0.17</td>
<td>0.26</td>
<td>28.21</td>
<td>2.01</td>
<td>5.86</td>
<td>36.15</td>
<td>76</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>26.95</td>
<td>3.51</td>
<td>0.16</td>
<td>0.31</td>
<td>30.95</td>
<td>1.70</td>
<td>4.14</td>
<td>36.79</td>
<td>84</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>29.19</td>
<td>3.75</td>
<td>0.19</td>
<td>0.40</td>
<td>33.53</td>
<td>2.07</td>
<td>2.19</td>
<td>37.19</td>
<td>89</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Cambissolo (C)

Solos constituídos por material mineral, que apresentam horizonte A ou hístico com espessura < 40 cm seguido de horizonte B incipiente e satisfazendo os seguintes requisitos:

- B incipiente não coincidente com horizonte glei dentro de 50 cm da superfície do solo;
- B incipiente não coincidente com horizonte plíntico;
- B incipiente não coincidente com horizonte vértico dentro de 100 cm da superfície do solo; e
- Não apresenta a conjugação de horizonte A chernozêmico e horizonte B incipiente com alta saturação por bases e argila de atividade alta.

Subordens registradas

Cambissolo Háplico Ta eutrófico típico.

Descrição dos perfis

Número de campo: 3 - 1;
Perfil: 3 (Tabela 9);
Data: 11.12.1995;
Classificação: Cambissolo Háplico Ta eutrófico típico;
Localização, município e Estado: Reserva Extrativista do Alto Juruá-Seringal São João, Marechal Thaumaturgo, Acre;
Litologia: Argilitos silticos e siltitos argilosos carbonatados;
Formação geológica: Formação Solimões;
Material originário: Sedimentos da Formação Solimões;
Pedregosidade: Não-pedregosa;
Rochosidade: Não-rochosa;
Relevo local: Ondulado;
Relevo regional: Forte ondulado;
Erosão: Ligeira;
Drenagem: Bem drenado;
Vegetação primária: Floresta tropical aberta com palmeiras;
Uso atual: Floresta primária.

Descrito e coletado por: Antonio Willian Flores de Melo e Eufran Ferreira do Amaral.
Descrição morfológica

A1 0 - 09 cm; cinzento muito escuro (5YR 3/1 úmido); franco-arenosa; fraca médio granular; macio, solto, ligeiramente plástico, não-pegajoso; transição plana.

A2 09 - 23 cm; bruno (10YR 4/3 úmido); franco-arenosa; fraca médio blocos subangulares; ligeiramente duro, muito friável, ligeiramente plástico, não-pegajoso; transição plana.

AB 23 - 37 cm; bruno-amarelado-escuro (10YR 4/4 úmido); franco-arenosa; fraca médio granular; ligeiramente duro, muito friável, ligeiramente plástico, não-pegajoso; transição plana.

BA 37 - 56 cm; vermelho-amarelado (5YR 4/6 úmido); franco-arenosa; fraca médio blocos subangulares; duro, muito friável, ligeiramente plástico, não-pegajoso; transição plana.

Bi 56 - 110+ cm; vermelho-amarelado (5YR 4/6 úmido); franco-arenosa; fraca médio blocos subangulares; duro, muito friável, ligeiramente plástico, não-pegajoso.

Raízes: Muitas e finas no horizonte A1, A2 e BA, comuns e finas em Bi.
TABELA 9. Análises físicas e químicas de um perfil de solo Cambissolo Háplico Ta eutrófico típico (Perfil 3).

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Frações da amostra total (%</th>
<th>Composição granulométrica de terra fina (dispersão com NaOH)</th>
<th>% Argila dispersa em água (%)</th>
<th>Grau de floculação (%)</th>
<th>%SBg g/cm³</th>
<th>%Argila</th>
<th>Densidade g/cm³</th>
<th>Porosidade % (volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Horizonte</td>
<td>Profundidade em cm</td>
<td>Calhaù > 20 mm</td>
<td>Cascalho 20-2 mm</td>
<td>Terra fina <2mm</td>
<td>Área grossa 0.2-0.05 mm</td>
<td>Área fina 0.05-0.002 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1</td>
<td>0-9</td>
<td>49.8</td>
<td>21.9</td>
<td>18.9</td>
<td>11.6</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2</td>
<td>9-23</td>
<td>52.3</td>
<td>21.0</td>
<td>14.2</td>
<td>12.5</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A3</td>
<td>23-37</td>
<td>52.4</td>
<td>19.5</td>
<td>14.9</td>
<td>12.3</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BA</td>
<td>37-56</td>
<td>56.0</td>
<td>18.1</td>
<td>15.1</td>
<td>13.3</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Te</td>
<td>56-110</td>
<td>60.4</td>
<td>7.4</td>
<td>12.6</td>
<td>15.3</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>pH (1:2.5)</th>
<th>Complexo sortivo cmol+/100 g</th>
<th>Valor V (sat. de bases) %</th>
<th>100. Al+++</th>
<th>P. extraível mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Agua</td>
<td>Ca²⁺</td>
<td>Mg²⁺</td>
<td>Na⁺</td>
</tr>
<tr>
<td>A1</td>
<td>7.74</td>
<td>6.82</td>
<td>12.84</td>
<td>1.86</td>
<td>0.38</td>
</tr>
<tr>
<td>A2</td>
<td>5.86</td>
<td>5.77</td>
<td>6.27</td>
<td>0.98</td>
<td>0.59</td>
</tr>
<tr>
<td>A3</td>
<td>5.67</td>
<td>5.11</td>
<td>6.38</td>
<td>0.92</td>
<td>0.57</td>
</tr>
<tr>
<td>BA</td>
<td>5.73</td>
<td>4.42</td>
<td>6.25</td>
<td>1.91</td>
<td>0.68</td>
</tr>
<tr>
<td>Bi</td>
<td>4.63</td>
<td>4.05</td>
<td>5.84</td>
<td>2.24</td>
<td>1.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>C (orgânico) (dag/kg)</th>
<th>N (dag/kg)</th>
<th>C/N</th>
<th>Ataque por H₂SO₄ (1:1) %</th>
<th>SiO₂ (Kg)</th>
<th>Al₂O₃ (Kg)</th>
<th>Fe₂O₃ livre (%)</th>
<th>Equivalência de CaCO₃ (Kg) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2.24</td>
<td>12.4</td>
<td>0.19</td>
<td>0.6</td>
<td>2.3</td>
<td>0.20</td>
<td>62.58</td>
<td>3.33</td>
</tr>
<tr>
<td>A2</td>
<td>0.45</td>
<td>7.0</td>
<td>0.07</td>
<td>0.6</td>
<td>2.2</td>
<td>0.20</td>
<td>62.58</td>
<td>3.33</td>
</tr>
<tr>
<td>A3</td>
<td>0.37</td>
<td>7.0</td>
<td>0.07</td>
<td>0.6</td>
<td>2.2</td>
<td>0.20</td>
<td>62.58</td>
<td>3.33</td>
</tr>
<tr>
<td>BA</td>
<td>0.59</td>
<td>7.0</td>
<td>0.07</td>
<td>0.6</td>
<td>2.2</td>
<td>0.20</td>
<td>62.58</td>
<td>3.33</td>
</tr>
<tr>
<td>Bi</td>
<td>0.11</td>
<td>7.0</td>
<td>0.16</td>
<td>0.6</td>
<td>2.2</td>
<td>0.20</td>
<td>62.58</td>
<td>3.33</td>
</tr>
</tbody>
</table>

2
Número de campo: 2 - 3;
Perfíl: 7 (Tabela 10);
Data: 17.1.1996;
Classificação: Cambissolo Háplico Ta eutrófico típico;
Localização, município e Estado: Reserva Extrativista do Alto Juruá-Seringal
Seringueirinha, Marechal Thaumaturgo, Acre;
Litologia: Argilitos sílticos e siltitos argilosos carbonatados;
Formação geológica: Formação Solimões;
Material originário: Sedimentos da Formação Solimões;
Pedregosidade: Não-pedregosa;
Rochosidade: Não-rochosa;
Relevo local: Forte ondulado;
Relevo regional: ondulado;
Erosão: Não-aparente;
Drenagem: Bem drenado;
Vegetação primária: Floresta tropical aberta com palmeiras;
Uso atual: Floresta primária;
Descrito e coletado por: Antonio Willian Flores de Melo e Eufran Ferreira do
Amaral.
Descrição morfológica

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Profundidade</th>
<th>Cor</th>
<th>Textura</th>
<th>Consistência</th>
<th>Volumoso</th>
<th>Transição</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0 - 10 cm</td>
<td>bruno (10YR 3/3 úmido)</td>
<td>franca; fraca pequeno blocos subangulares; ligeiramente duro, muito friável; transição plana e clara.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>10 - 23 cm</td>
<td>bruno-escuro (10YR 4/3 úmido)</td>
<td>franca; fraca médio blocos subangulares; duro, friável; transição plana e abrupta.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>23 - 40 cm</td>
<td>bruno-amarelado-escuro (10YR 4/4 úmido)</td>
<td>franco-argilosa; fraca médio blocos subangulares; duro, friável; transição plana e clara.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi</td>
<td>40 - 65 cm</td>
<td>bruno-amarelado-escuro (10YR 4/4 úmido)</td>
<td>franco-argilosa; moderada grande blocos subangulares; muito duro; firme; transição plana e clara.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>65 - 77 cm</td>
<td>bruno-amarelado (10YR 5/6 úmido)</td>
<td>franco-argilosa; moderada grande blocos subangulares; muito duro, firme; transição plana e clara.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>77 - 120+ cm</td>
<td>bruno-amarelado (10YR 5/8 úmido)</td>
<td>argila; maciça; muito duro, firme.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Raízes: Muitas e médias nos horizontes A1, A2 e BA, comuns e finas em Bi, poucas e finas em BC e raras e finas em C.
TABELA 10. Análises físicas e químicas de um perfil de solo Cambissolo Háplico Ta eutrófico típico (Perfil 7).

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Frações da amostra total (%)</th>
<th>Composição granulométrica de terra fina (dispersão com NaOH) %</th>
<th>Argila dispersa em água (%)</th>
<th>Densidade g/cm³</th>
<th>Porosidade %</th>
<th>% Argila Aparente</th>
<th>Real</th>
<th>% Silte</th>
<th>% Argila</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>> 20 mm</td>
<td>Calhau 20-2 mm</td>
<td>Terra fina < 2 mm</td>
<td>Areia grossa 2-0.20 mm</td>
<td>Areia fina 0.20-0.05 mm</td>
<td>Silte 0.05-0.002 mm</td>
<td>Argila < 0.002 mm</td>
<td>2.03</td>
<td>18.9</td>
</tr>
<tr>
<td>AB</td>
<td>20-2 mm</td>
<td>Cascalho 20-2 mm</td>
<td>Terra fina < 2 mm</td>
<td>Areia grossa 2-0.20 mm</td>
<td>Areia fina 0.20-0.05 mm</td>
<td>Silte 0.05-0.002 mm</td>
<td>Argila < 0.002 mm</td>
<td>16.8</td>
<td>18.7</td>
</tr>
<tr>
<td>BA</td>
<td>2-0.2 mm</td>
<td>Calhau 2-0.2 mm</td>
<td>Terra fina < 2 mm</td>
<td>Areia grossa 2-0.20 mm</td>
<td>Areia fina 0.20-0.05 mm</td>
<td>Silte 0.05-0.002 mm</td>
<td>Argila < 0.002 mm</td>
<td>11.0</td>
<td>22.3</td>
</tr>
<tr>
<td>BB</td>
<td>0.2-0.05 mm</td>
<td>Calhau 0.2-0.05 mm</td>
<td>Terra fina < 2 mm</td>
<td>Areia grossa 2-0.20 mm</td>
<td>Areia fina 0.20-0.05 mm</td>
<td>Silte 0.05-0.002 mm</td>
<td>Argila < 0.002 mm</td>
<td>10.5</td>
<td>19.4</td>
</tr>
<tr>
<td>BC</td>
<td>0.05-0.002 mm</td>
<td>Calhau 0.05-0.002 mm</td>
<td>Terra fina < 2 mm</td>
<td>Areia grossa 2-0.20 mm</td>
<td>Areia fina 0.20-0.05 mm</td>
<td>Silte 0.05-0.002 mm</td>
<td>Argila < 0.002 mm</td>
<td>9.3</td>
<td>16.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>pH (1:2.5)</th>
<th>Complexo sortivo</th>
<th>Valor V (sat. de bases)</th>
<th>100. Al++</th>
<th>P. extraval mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>6.08</td>
<td>6.33</td>
<td>20.38</td>
<td>2.14</td>
<td>0.26</td>
</tr>
<tr>
<td>AB</td>
<td>5.30</td>
<td>5.34</td>
<td>12.94</td>
<td>4.31</td>
<td>0.39</td>
</tr>
<tr>
<td>BA</td>
<td>4.92</td>
<td>3.90</td>
<td>14.14</td>
<td>3.35</td>
<td>0.12</td>
</tr>
<tr>
<td>BB</td>
<td>4.42</td>
<td>3.77</td>
<td>12.28</td>
<td>2.78</td>
<td>0.11</td>
</tr>
<tr>
<td>BC</td>
<td>4.49</td>
<td>3.77</td>
<td>18.05</td>
<td>2.77</td>
<td>0.14</td>
</tr>
<tr>
<td>C</td>
<td>4.72</td>
<td>3.74</td>
<td>18.57</td>
<td>3.47</td>
<td>0.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>C (orgânico) (dag/kg)</th>
<th>N (dag/kg)</th>
<th>C/N</th>
<th>Ataque por H2SO4 (1:1) %</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>SiO2</th>
<th>AlO2</th>
<th>FeO</th>
<th>SiO2R</th>
<th>AlO2R</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>4.3</td>
<td>16.0</td>
<td>0.27</td>
<td>9.3</td>
<td>4.3</td>
<td>2.7</td>
<td>0.35</td>
<td>34.39</td>
<td>3.39</td>
<td>2.62</td>
<td>2.50</td>
</tr>
<tr>
<td>AB</td>
<td>5.1</td>
<td>19.0</td>
<td>0.22</td>
<td>13.6</td>
<td>7.0</td>
<td>3.1</td>
<td>0.42</td>
<td>2.29</td>
<td>3.30</td>
<td>2.49</td>
<td>3.05</td>
</tr>
<tr>
<td>BA</td>
<td>6.4</td>
<td>22.0</td>
<td>0.28</td>
<td>16.0</td>
<td>11.6</td>
<td>5.5</td>
<td>0.52</td>
<td>3.30</td>
<td>3.30</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>BB</td>
<td>7.3</td>
<td>25.0</td>
<td>0.29</td>
<td>18.5</td>
<td>14.0</td>
<td>6.5</td>
<td>0.56</td>
<td>3.30</td>
<td>3.30</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>BC</td>
<td>8.1</td>
<td>28.0</td>
<td>0.29</td>
<td>21.0</td>
<td>16.0</td>
<td>7.5</td>
<td>0.60</td>
<td>3.30</td>
<td>3.30</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>C</td>
<td>9.1</td>
<td>31.0</td>
<td>0.31</td>
<td>23.5</td>
<td>18.0</td>
<td>8.5</td>
<td>0.64</td>
<td>3.30</td>
<td>3.30</td>
<td>2.50</td>
<td>2.50</td>
</tr>
</tbody>
</table>
Número de campo: 7 - 3;
Perfil: 12 (Tabela 11);
Data: 26.1.1996;
Classificação: Cambissolo Háplico Ta eutrófico típico;
Localização, município e Estado: Reserva Extrativista do Alto Juruá-Seringal Seringueirinha, Marechal Thaumaturgo, Acre;
Litologia: Argilitos silticos e siltitos argilosos carbonatados;
Formação geológica: Formação Solimões;
Material originário: Sedimentos da Formação Solimões;
Pedregosidade: Não-pedregosa;
Rochosidade: Não-rochosa;
Relevo local: Ondulado;
Relevo regional: Forte ondulado;
Erosão: Não-aparente;
Drenagem: Moderadamente drenado;
Vegetação primária: Floresta tropical aberta com palmeiras;
Uso atual: Floresta primária;
Descrito e coletado por: Antonio Willian Flores de Melo e Eufran Ferreira do Amaral;
Descrição morfológica

A1 0 - 15 cm; bruno-escuro (10YR 3/3 úmido); franco-argilosa; fraca pequeno blocos subangulares; macio, friável; transição plana e clara.

A2 15 - 41 cm; bruno-escuro (10YR 3/3 úmido); franco-argilosa; fraca pequeno blocos subangulares; muito duro, friável; transição plana e clara.

AB 41 - 51 cm; bruno (10YR 4/3 úmido); franco-argilosa; fraca pequeno blocos subangulares; duro, friável; transição plana e clara.

BA 51 - 72 cm; bruno-avermelhado-escuro (5YR 3/4 úmido); franco-argilosa; moderada grande blocos subangulares; duro, firme; transição plana e gradual.

Bi 72 - 135+ cm; bruno-avermelhado (5YR 4/4 úmido); franco-argilosa; moderada grande blocos angulares; muito duro, firme.

Raízes: Muitas e médias nos horizontes A1 e A2, comuns e finas em AB, poucas e finas em BA, raras e finas em Bi.
TABELA 11. Análises físicas e químicas de um perfil de solo Cambissolo Háplico Ta eutrófico típico (Perfil 12).

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Frações da amostra total (%)</th>
<th>Composição granulométrica de terra fina (dispersão com NaOH) (%)</th>
<th>Argila dispersa (%</th>
<th>Grau de floculação (%)</th>
<th>Densidade g/cm³</th>
<th>Porosidade %</th>
<th>%Silte %Argila</th>
<th>Aparente</th>
<th>Real</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>11.03 21.07 38.10 26.09</td>
<td>Horizontes</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
<td>0.8</td>
</tr>
<tr>
<td>A2</td>
<td>11.01 16.97 41.08 30.06</td>
<td></td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>8.01 16.05 34.04 41.00</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>2.03 26.04 32.04 37.09</td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>0.38 41.06 30.04 27.06</td>
<td></td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>pH (1:2.5)</th>
<th>Complexo cátionico cmol/p/100 g</th>
<th>Valor V (sat. de bases)</th>
<th>100 Al³⁺</th>
<th>P. extrai-vel mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>6.51</td>
<td>Acusa</td>
<td>5.89</td>
<td>25.23</td>
<td>5.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mg</td>
<td>0.36</td>
<td>0.13</td>
<td>31.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
<td>0.10</td>
<td>0.10</td>
<td>32.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na</td>
<td>0.89</td>
<td>0.26</td>
<td>36.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valor S (soma)</td>
<td>33.71</td>
<td>2.56</td>
<td>39.23</td>
</tr>
<tr>
<td>A2</td>
<td>5.91</td>
<td>Carosa</td>
<td>4.09</td>
<td>26.26</td>
<td>7.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mg</td>
<td>0.13</td>
<td>0.08</td>
<td>39.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
<td>0.15</td>
<td>0.09</td>
<td>39.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na</td>
<td>0.05</td>
<td>0.05</td>
<td>38.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valor S (soma)</td>
<td>33.79</td>
<td>0.49</td>
<td>41.56</td>
</tr>
<tr>
<td>A3</td>
<td>5.04</td>
<td>Batosa</td>
<td>4.04</td>
<td>26.75</td>
<td>6.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mg</td>
<td>0.14</td>
<td>0.11</td>
<td>34.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
<td>0.13</td>
<td>0.13</td>
<td>32.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na</td>
<td>0.12</td>
<td>0.12</td>
<td>28.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valor S (soma)</td>
<td>1.14</td>
<td>1.14</td>
<td>31.08</td>
</tr>
<tr>
<td>BA</td>
<td>0.33</td>
<td>Biais</td>
<td>2.04</td>
<td>26.75</td>
<td>6.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mg</td>
<td>0.12</td>
<td>0.12</td>
<td>32.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
<td>0.13</td>
<td>0.13</td>
<td>32.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na</td>
<td>0.12</td>
<td>0.12</td>
<td>28.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valor S (soma)</td>
<td>1.14</td>
<td>1.14</td>
<td>31.08</td>
</tr>
<tr>
<td>Bi</td>
<td>0.05</td>
<td>Biogonal</td>
<td>1.04</td>
<td>26.75</td>
<td>6.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mg</td>
<td>0.12</td>
<td>0.12</td>
<td>32.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
<td>0.13</td>
<td>0.13</td>
<td>32.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na</td>
<td>0.12</td>
<td>0.12</td>
<td>28.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valor S (soma)</td>
<td>1.14</td>
<td>1.14</td>
<td>31.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C (orgânico)</th>
<th>N (dag/kg)</th>
<th>C/N</th>
<th>Alça por H₂O₃ (1:1)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>0.09</td>
<td>13.9 6.6 3.4 0.29</td>
<td>38.94 3.58 2.69 3.05</td>
</tr>
<tr>
<td>A2</td>
<td>0.09</td>
<td>0.04</td>
<td>0.70 21.05</td>
<td>21.06 3.22 2.69 3.05</td>
</tr>
<tr>
<td>A3</td>
<td>0.03</td>
<td>21 0.04</td>
<td>0.70 21.05</td>
<td>21.06 3.22 2.69 3.05</td>
</tr>
<tr>
<td>BA</td>
<td>0.16</td>
<td>32 0.01</td>
<td>0.70 21.05</td>
<td>21.06 3.22 2.69 3.05</td>
</tr>
<tr>
<td>Bi</td>
<td>0.05</td>
<td>30 0.00</td>
<td>17.7 4.3 0.51 4.58</td>
<td>3.31 2.54 3.32 3.32</td>
</tr>
</tbody>
</table>
Número de campo: 8 - 3;
Perfil: 13 (Tabela 12);
Data: 27.1.1996;
Classificação: Cambissolo Háplico Ta eutrófico típico;
Localização, município e Estado: Reserva Extrativista do Alto Juruá-Foz do Breu, Marechal Thaumaturgo, Acre;
Litologia: Argílitos sílticos e siltitos argilosos carbonatados;
Formação geológica: Formação Solimões;
Material originário: Sedimentos da Formação Solimões;
Pedregosidade: Não-pedregosa;
Rochosidade: Não-rochosa;
Relevo local: Forte ondulado;
Relevo regional: Fortemente ondulado;
Erosão: Ligeira;
Drenagem: Moderadamente drenado;
Vegetação primária: Floresta tropical aberta com palmeiras e cipó;
Uso atual: Floresta primária;
Descrito e coletado por: Antonio Willian Flores de Melo e Eufran Ferreira do Amaral.
Descrição morfológica

A1 0 - 9 cm; bruno-avermelhado-escuco (5YR 3/4 úmido); franco-argilo-siltosa; fraca pequeno blocos subangulares; macio, friável, transição plana e clara.

AB 9 - 17 cm; bruno (7,5YR 4/4 úmido); franco-argilo-siltosa; fraca pequeno blocos subangulares; duro, friável, transição plana e clara.

BA 17 - 30 cm; vermelho-amarelado (5YR 4/6 úmido); argila; fraca pequeno blocos subangulares; ligeiramente duro, friável; transição plana e clara.

Bi 30 - 60 cm; vermelho-amarelado (5YR 4/6 úmido); argilo-siltosa; moderada médio blocos angulares; duro, firme; transição plana e clara.

BC 60 - 81 cm; bruno-forte (7,5YR 4/6 úmido); argilo-siltosa; moderada grande blocos subangulares; duro, firme; transição plana e clara.

CB 81 - 100 cm; bruno (7,5YR 5/4 úmido); argilo-siltosa; forte grande blocos subangulares; muito duro, firme; transição plana e clara.

C 100 - 120+ cm; bruno-avermelhado (5YR 4/4 úmido); argilo-siltosa; forte grande blocos subangulares; muito duro, muito firme.

Raízes: Muitas e finas a médias nos horizontes A1, AB e BA, comuns e finas em Bi, poucas e finas em BC e raras e finas em CB e C.
TABELA 12. Análises físicas e químicas de um perfil de solo Cambissolo Háplico Ta eutrófico típico (Perfil 13).

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Frações da amostra total (%)</th>
<th>Composição granulométrica de terra fina (dispersão com NaOH) (%)</th>
<th>Argila dispersa em água (%)</th>
<th>Grau de flocação (%)</th>
<th>%Sand</th>
<th>%Argila</th>
<th>Densidade g/cm³</th>
<th>Porosidade % (volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>9.8</td>
<td>33.9</td>
<td>1.9</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>17.30</td>
<td>14.9</td>
<td>34.4</td>
<td>47.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc</td>
<td>30.80</td>
<td>8.4</td>
<td>44.3</td>
<td>44.7</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bh</td>
<td>60.81</td>
<td>2.8</td>
<td>44.5</td>
<td>52.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cm</td>
<td>81.100</td>
<td>6.6</td>
<td>47.9</td>
<td>49.1</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>pH (1:2.5)</th>
<th>Complexo sortivo Cmol./100 g</th>
<th>Valor V (sal. de bases) 100. Al**+ %</th>
<th>P*extra-vel mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>5.45</td>
<td>4.95</td>
<td>13.45</td>
<td>7.82</td>
</tr>
<tr>
<td>A2</td>
<td>5.59</td>
<td>4.41</td>
<td>11.17</td>
<td>7.66</td>
</tr>
<tr>
<td>Bc</td>
<td>4.68</td>
<td>3.87</td>
<td>11.22</td>
<td>7.72</td>
</tr>
<tr>
<td>Bh</td>
<td>4.56</td>
<td>3.74</td>
<td>9.53</td>
<td>6.55</td>
</tr>
<tr>
<td>Cm</td>
<td>6.73</td>
<td>4.00</td>
<td>23.88</td>
<td>14.23</td>
</tr>
<tr>
<td>C</td>
<td>6.62</td>
<td>4.04</td>
<td>25.65</td>
<td>14.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>C (orgânico) (dag/kg)</th>
<th>N (dog/kg)</th>
<th>C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0.37</td>
<td>10.06</td>
<td>14.1</td>
</tr>
<tr>
<td>A2</td>
<td>1.01</td>
<td>10.01</td>
<td>22.9</td>
</tr>
</tbody>
</table>

Ataque por H₂SO₄ (1:1) (%)

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>SiO₂ (K)</th>
<th>Al₂O₃ (K)</th>
<th>Fe₂O₃ (K)</th>
<th>SiO₂ (mol)</th>
<th>Al₂O₃ (mol)</th>
<th>Fe₂O₃ (mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>5.57</td>
<td>3.56</td>
<td>14.1</td>
<td>7.8</td>
<td>5.5</td>
<td>46.81</td>
</tr>
<tr>
<td>A2</td>
<td>0.91</td>
<td>16.00</td>
<td>20.3</td>
<td>13.0</td>
<td>7.7</td>
<td>2.66</td>
</tr>
<tr>
<td>Bc</td>
<td>0.37</td>
<td>19.00</td>
<td>20.3</td>
<td>13.0</td>
<td>7.7</td>
<td>2.66</td>
</tr>
<tr>
<td>Cm</td>
<td>0.24</td>
<td>29.77</td>
<td>20.3</td>
<td>13.0</td>
<td>7.7</td>
<td>2.66</td>
</tr>
<tr>
<td>C</td>
<td>0.17</td>
<td>77.56</td>
<td>20.3</td>
<td>13.0</td>
<td>7.7</td>
<td>2.66</td>
</tr>
</tbody>
</table>

Símbolo Profundidade em cm
- Calhau: > 20 mm
- Cascalho: 20-2 mm
- Terra fina: <2 mm
- Areia grossa: 2-0.20 mm
- Areia fina: 0.20-0.05 mm
- Silte: 0.05-0.002 mm
- Argila: <0.002 mm

Calhau
- Apaizante
- Real
- %Argila
- % de água
Perfil: 77 (Tabela 13);
Classificação: Cambissolo Háplico Ta eutrófico típico;
Localização: Município de Cruzeiro do Sul-AC. Lat. 9º 24’ S e Long. 72º 17’ WGr. Folha SC. 18-X-D;
Situação, declividade e erosão: Topo de elevação, com declive de 0% a 2%, erosão laminar ligeira;
Material originário: Sedimentos da Formação Solimões (Plio-Pleistoceno);
Relevo: Suave ondulado a ondulado;
Drenagem: Bem drenado;
Cobertura vegetal: Floresta aberta;
Descrito e coletado por: Brasil (1977).

Descrição morfológica
A1 0 - 15 cm; bruno a bruno-escuro (7,5YR 4/4); franco-argilo-siltoso; moderada muito pequena a pequena granular; friável, muito plástico e pegajoso; transição difusa.
A3 15 - 30 cm; bruno (7,5YR 5/4); franco-argilo-siltoso; moderada muito pequena a pequena granular e blocos subangulares; friável, muito plástico e pegajoso; transição gradual.
(B)1 30 - 50 cm; bruno-avermelhado (5YR 4/4); franco-argilo-siltoso; moderada muito pequena granular e blocos subangulares; friável, muito plástico e pegajoso; transição gradual.
(B)2 50 - 70 cm, vermelho-amarelado (7,5YR 4/6); franco-argilo-siltoso; moderada pequena blocos subangulares; firme, muito plástico e muito pegajoso; transição difusa.
(B)3 70 - 80 cm; vermelho-amarelado (7,5YR 4/6); franco-siltoso; moderada pequena blocos subangulares; firme, muito plástico e muito pegajoso; transição gradual.
Cca 80 - 145+ cm; bruno-avermelhado (7,5YR 5/3); franco-siltoso; maciça; friável, muito plástico e pegajoso.

Raízes: Comuns médias e finas no A1 e A3.
<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Profundidade em cm</th>
<th>Esqueleto % (> 2mm)</th>
<th>Areia muito grossa 2-1mm</th>
<th>Areia grossa 1-0,5mm</th>
<th>Areia média 0,5-0,25mm</th>
<th>Areia fina 0,25-0,10mm</th>
<th>Areia muito fina 0,10-0,05mm</th>
<th>Silte < 0,005mm</th>
<th>Argila < 0,002 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0-15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>58.4</td>
<td>27.7</td>
</tr>
<tr>
<td>A2</td>
<td>15-30</td>
<td>-</td>
<td>0.3</td>
<td>4.9</td>
<td>8.7</td>
<td>54.4</td>
<td>11.5</td>
<td>55.4</td>
<td>23.7</td>
</tr>
<tr>
<td>(B)1</td>
<td>30-50</td>
<td>-</td>
<td>0.3</td>
<td>4.5</td>
<td>8.3</td>
<td>54.2</td>
<td>11.5</td>
<td>55.4</td>
<td>23.7</td>
</tr>
<tr>
<td>(B)2</td>
<td>50-70</td>
<td>-</td>
<td>0.3</td>
<td>2.5</td>
<td>8.9</td>
<td>58.5</td>
<td>11.7</td>
<td>55.4</td>
<td>23.7</td>
</tr>
<tr>
<td>(B)3</td>
<td>70-90</td>
<td>-</td>
<td>0.1</td>
<td>2.5</td>
<td>14.7</td>
<td>55.3</td>
<td>17.4</td>
<td>55.3</td>
<td>27.4</td>
</tr>
<tr>
<td>C</td>
<td>90-145</td>
<td>0.1</td>
<td>0.3</td>
<td>0.7</td>
<td>8.4</td>
<td>18.2</td>
<td>55.2</td>
<td>17.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizontes</th>
<th>Argila natural (%)</th>
<th>Grão de floculação (%)</th>
<th>Argila</th>
<th>Grãos de ágar (%)</th>
<th>Umidade equivalente (%)</th>
<th>H2O</th>
<th>KCl</th>
<th>C</th>
<th>Óxido de ferro livre - Fe2O3 %</th>
<th>PO4 cmol+/100g</th>
<th>Al. Total (CaOAc) Me/100g</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>10.84</td>
<td>61</td>
<td>2.16</td>
<td>7.2</td>
<td>6.4</td>
<td>2.1</td>
<td>3.62</td>
<td>0.87</td>
<td></td>
<td>0.07</td>
<td>0.84</td>
</tr>
<tr>
<td>A2</td>
<td>10.12</td>
<td>66</td>
<td>1.85</td>
<td>6.8</td>
<td>5.9</td>
<td>1.4</td>
<td>2.41</td>
<td>0.86</td>
<td></td>
<td>0.04</td>
<td>1.54</td>
</tr>
<tr>
<td>(B)1</td>
<td>8.78</td>
<td>76</td>
<td>1.92</td>
<td>7.6</td>
<td>6.3</td>
<td>1.2</td>
<td>1.72</td>
<td>0.86</td>
<td></td>
<td>0.04</td>
<td>2.56</td>
</tr>
<tr>
<td>(B)2</td>
<td>6.98</td>
<td>76</td>
<td>2.02</td>
<td>5.9</td>
<td>4.8</td>
<td>0.3</td>
<td>0.51</td>
<td>0.93</td>
<td></td>
<td>0.18</td>
<td>2.24</td>
</tr>
<tr>
<td>(B)3</td>
<td>11.72</td>
<td>57</td>
<td>2.01</td>
<td>7.5</td>
<td>6.5</td>
<td>0.5</td>
<td>0.86</td>
<td>0.87</td>
<td></td>
<td>0.01</td>
<td>0.36</td>
</tr>
<tr>
<td>C</td>
<td>12.85</td>
<td>19</td>
<td>3.24</td>
<td>8.6</td>
<td>5.8</td>
<td>0.4</td>
<td>0.34</td>
<td>0.56</td>
<td></td>
<td>0.01</td>
<td>0.96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizontes</th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>Na</th>
<th>Valor I (soma)</th>
<th>H</th>
<th>Al</th>
<th>Valor T (soma)</th>
<th>V (%)</th>
<th>100. Al%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>32.15</td>
<td>3.35</td>
<td>0.28</td>
<td>0.14</td>
<td>39.37</td>
<td>0.73</td>
<td>0.11</td>
<td>36.77</td>
<td>88</td>
<td>0</td>
</tr>
<tr>
<td>A2</td>
<td>29.13</td>
<td>3.82</td>
<td>0.24</td>
<td>0.13</td>
<td>31.38</td>
<td>1.23</td>
<td>0.26</td>
<td>34.92</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>(B)1</td>
<td>29.12</td>
<td>3.53</td>
<td>0.16</td>
<td>0.13</td>
<td>31.93</td>
<td>2.24</td>
<td>0.26</td>
<td>34.92</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>(B)2</td>
<td>29.77</td>
<td>2.98</td>
<td>0.14</td>
<td>0.14</td>
<td>22.93</td>
<td>1.69</td>
<td>0.35</td>
<td>35.73</td>
<td>94</td>
<td>0</td>
</tr>
<tr>
<td>(B)3</td>
<td>33.27</td>
<td>1.82</td>
<td>0.08</td>
<td>0.20</td>
<td>35.37</td>
<td>0.31</td>
<td>0.05</td>
<td>35.73</td>
<td>99</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>21.48</td>
<td>0.98</td>
<td>0.08</td>
<td>0.20</td>
<td>22.58</td>
<td>0.00</td>
<td>0.06</td>
<td>22.63</td>
<td>99</td>
<td>0</td>
</tr>
</tbody>
</table>
Chernossolos (M)

Solos constituídos por material mineral, que apresentam horizonte A chernozêmico seguido por:
- horizonte B incipiente, B textural ou B nítico, com argila de atividade alta e saturação por bases alta; ou
- horizonte cálcico ou com caráter carbonático, coincidente com o horizonte A chernozêmico e/ou com horizonte C, admitindo-se entre os dois, horizonte Bi com espessura < 10 cm; ou
- contato lítico desde que o horizonte A chernozêmico contenha 15% ou mais de carbonato de cálcio equivalente.

Subordens registradas

Chernossolo Háplico órtico típico.

Descrição dos perfis

Número de campo: 2 - 2;
Perfil: 5 (Tabela 14);
Data: 15.12.1995;
Classificação: Chernossolo Háplico órtico típico;
Localização, município e Estado: Reserva Extrativista do Alto Juruá-Seringal Restauração, Marechal Thaumaturgo, Acre;
Litologia: Argilitos sílticos e siltitos argilosos carbonatados;
Formação geológica: Formação Solimões;
Material originário: Sedimentos da Formação Solimões;
Pedregosidade: Não-pedregosa;
Rochosidade: Não-rochosa;
Relevo local: Ondulado;
Relevo regional: Forte ondulado;
Erosão: Ligeira;
Drenagem: Moderadamente drenado;
Vegetação primária: Floresta tropical aberta com palmeiras;
Uso atual: Floresta primária;
Descrito e coletado por: Antonio Willian Flores de Melo e Eufran Ferreira do Amaral.
Descrição morfológica

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>0 - 05 cm</th>
<th>05 - 19 cm</th>
<th>19 - 33 cm</th>
<th>33 - 61 cm</th>
<th>61 + 100 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>bruno-escuro (10YR 3/3 úmido); franca; argiloso; fraca muito pequeno blocos subangulares; duro, friável, ligeiramente plástico, ligeiramente pegajoso; transição plana.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>bruno-amarelado-escuro (10YR 4/4 úmido); franca; fraca pequeno blocos subangulares; duro, firme, plástico, ligeiramente pegajoso; transição plana.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>bruno (10YR 4/3 úmido); franca; fraca médio blocos subangulares; duro, firme, plástico, ligeiramente pegajoso; transição plana.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>bruno (10YR 4/3 úmido); franca; fraca médio blocos subangulares; muito duro, firme, plástico, pegajoso; transição plana.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi</td>
<td>bruno (7,5YR 4/4 úmido); franca; fraca médio blocos subangulares; muito duro, firme, plástico, pegajoso.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABELA 14. Análises físicas e químicas de um perfil de solo Chernossolo Háplico ortóico típico (Perfil 5).

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Frações da amostra total (%</th>
<th>Composição granulométrica de terra fina (dispersão com NaOH) (%</th>
<th>Argila dispersa em água (%</th>
<th>Grau de flocação (%)</th>
<th>% Silte</th>
<th>Densidade g/cm³</th>
<th>Porosidade</th>
<th>% (volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-20 mm 10-20 mm 20-40 mm 40-80 mm 80-100 mm</td>
<td>Argila grossa 20-200 mm</td>
<td>Argila fina 0,002-0,005 mm</td>
<td>0,005-0,002 mm</td>
<td>0,002-0,001 mm</td>
<td>0,001-0,0005 mm</td>
<td>0,0005-0,0002 mm</td>
</tr>
<tr>
<td>A1</td>
<td>0%</td>
<td>18,8 26,4 26,7 21,1</td>
<td>17,3 26,4 30,5 25,6</td>
<td>2,12 26,9 37,4 27,5</td>
<td>1,1</td>
<td>61-100</td>
<td>11,5 31,3 29,9 26,7</td>
<td>1,1</td>
</tr>
<tr>
<td>A2</td>
<td>51,9%</td>
<td>10,3 32,5 32,0 24,5</td>
<td>17,3 26,4 30,5 25,6</td>
<td>2,12 26,9 37,4 27,5</td>
<td>1,1</td>
<td>61-100</td>
<td>11,5 31,3 29,9 26,7</td>
<td>1,1</td>
</tr>
<tr>
<td>A3</td>
<td>19,33%</td>
<td>14,4 26,9 37,4 27,5</td>
<td>17,3 26,4 30,5 25,6</td>
<td>2,12 26,9 37,4 27,5</td>
<td>1,1</td>
<td>61-100</td>
<td>11,5 31,3 29,9 26,7</td>
<td>1,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH (1:2,5)</td>
<td>Complexo solúvel (1:1) cmol/100 g</td>
<td>Valor V (sat. de bases)</td>
<td>Valor T (soma)</td>
<td>% Al⁴⁺⁺⁺</td>
<td>% Al⁴⁺⁺⁺⁺</td>
<td>% Al⁺⁺⁺⁺⁺</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agua KCl IN Ca Mg K Na Al³⁺ H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>5,05 5,48</td>
<td>20,29 4,12 0,34 0,07 24,82 0,12</td>
<td>3,96 29,39</td>
<td>85,88 0,49</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>4,81 4,10</td>
<td>15,58 3,64 0,17 0,19 21,42 0,11</td>
<td>3,85 24,15</td>
<td>80,70 3,99</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>4,29 3,91</td>
<td>15,58 3,23 0,11 0,12 20,39 0,12</td>
<td>3,33 24,39</td>
<td>79,23 7,99</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>4,72 3,83</td>
<td>16,80 3,89 0,11 0,17 20,97 0,17</td>
<td>3,12 26,55</td>
<td>76,98 10,50</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>6,03 4,11</td>
<td>19,18 3,88 0,14 0,25 23,45 0,75</td>
<td>2,20 26,49</td>
<td>88,89 3,26</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C (orgânico) (dag/kg)</td>
<td>N (dag/kg)</td>
<td>C/N</td>
<td>Ataque por H₂SO₄ (1:1) %</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>2,80 15</td>
<td>0,19 11,5 4,7 3,8 0,31 61,84</td>
<td>4,16 2,74 1,94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>0,71 22</td>
<td>0,03 25,19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>0,58 28</td>
<td>0,02 11,40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>0,01 40</td>
<td>0,00 14,9 7,8 4,1 0,38 6,97</td>
<td>3,25 2,43 2,99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>0,18 98</td>
<td>0,10 9,16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Número de campo: 4 - 3;
Perfil: 9 (Tabela 15);
Data: 22.1.1996;
Classificação: Chernossolo Háplico órtico típico;
Localização, município e Estado: Reserva Extrativista do Alto Juruá-Seringal Jacamim/Rio Amônia, Marechal Thaumaturgo, Acre;
Litologia: Argilitos silticos e siltitos argilosos carbonatados;
Formação geológica: Formação Solimões;
Material originário: Sedimentos da Formação Solimões;
Pedregosidade: Não-pedregosa;
Rochosidade: Não-rochosa;
Relevo local: Ondulado;
Relevo regional: Forte ondulado;
Erosão: Não-aparente;
Drenagem: Moderadamente drenado;
Vegetação primária: Floresta tropical aberta com palmeiras;
Uso atual: Floresta primária;
Descrito e coletado por: Antonio Willian Flores de Melo e Eufran Ferreira do Amaral.

Descrição morfológica

A1 0 - 10 cm; bruno-acinzentado muito escuro (10YR 3/2 úmido); franco-argilosa; fraca pequeno blocos subangulares; duro, friável; transição plana e abrupta.

AB 10 - 50 cm; bruno-escuro (10YR 3/3 úmido); franco-argilosa; fraca médio blocos subangulares; muito duro, friável; transição plana e abrupta.

BA 50 - 61 cm; bruno-escuro (7,5YR 3/2 úmido); franca; moderada médio blocos subangulares; muito duro, friável; transição plana e clara.

Bi 61 - 120+ cm; bruno-escuro (7,5YR 3/3,5 úmido); franco-siltosa; moderada médio blocos subangulares; muito duro, friável.

Raízes: Muitas e médias nos horizontes A1 e AB, poucas e médias em BA e Bi.
TABELA 15. Análises físicas e químicas de um perfil de solo Chernossolo Háplico órtico típico (Perfil 9).

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Frações da amostra total (%</th>
<th>Composição granulométrica de terra fina (dispersão com NaOH)</th>
<th>Grão</th>
<th>Grau de floculação</th>
<th>% Argila</th>
<th>Densidade g/cm³</th>
<th>Porosidade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Área fina <0,002 mm</td>
<td>Areia 0,05-0,002 mm</td>
<td>Silte 0,02-0,05 mm</td>
<td>Argila 0,02-0,2 mm</td>
<td>Areia 0,2-2 mm</td>
<td>Calhaux > 20 mm</td>
</tr>
<tr>
<td>A1</td>
<td>9-19</td>
<td>13.8</td>
<td>21.9</td>
<td>36.7</td>
<td>27.6</td>
<td>1.3</td>
<td>21.9</td>
</tr>
<tr>
<td>AB</td>
<td>10-39</td>
<td>11.0</td>
<td>28.2</td>
<td>27.9</td>
<td>32.9</td>
<td>0.8</td>
<td>28.2</td>
</tr>
<tr>
<td>BA</td>
<td>95-81</td>
<td>21.1</td>
<td>27.3</td>
<td>30.3</td>
<td>19.3</td>
<td>1.7</td>
<td>27.3</td>
</tr>
<tr>
<td>B</td>
<td>61-120°</td>
<td>21.5</td>
<td>4.7</td>
<td>50.8</td>
<td>23.0</td>
<td>2.2</td>
<td>4.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>pH (1:2,5)</th>
<th>Complexo sortivo cmol+/100 g</th>
<th>Valor V (%ат. de bases)</th>
<th>100. Al+++</th>
<th>P. extraível mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Agua</td>
<td>KCl IN</td>
<td>Ca</td>
<td>Mg</td>
<td>K</td>
</tr>
<tr>
<td>A1</td>
<td>6.05</td>
<td>5.77</td>
<td>28.32</td>
<td>3.36</td>
<td>0.21</td>
</tr>
<tr>
<td>AB</td>
<td>5.89</td>
<td>5.27</td>
<td>28.31</td>
<td>2.69</td>
<td>0.15</td>
</tr>
<tr>
<td>BA</td>
<td>7.67</td>
<td>7.20</td>
<td>27.32</td>
<td>4.07</td>
<td>0.06</td>
</tr>
<tr>
<td>B</td>
<td>7.95</td>
<td>7.19</td>
<td>28.27</td>
<td>1.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Horizonte	C (orgânico)	N (dag/kg)	C/N	Ataque por	H₂SO₄ (1:1) -	%	SiO₂	Al₂O₃	Fe₂O₃	TiO₂	P₂O₅	MnO	%	Equivalência	Fe₂O₃ livre (%)	CaCO₃ (%)
-----------	--------------	-----------	-----	------------	----------------	---	------	------	------	------	------	-----				
A1	3.15	11	0.29	SiO₂	11.7	11.7	5.7	2.6	0.31	48.10	3.49	2.70	3.44	CaCO₃ (%)		
AB	0.84	23	0.04	SiO₂	17.4	17.4	5.7	2.6	0.31	48.10	3.49	2.70	3.44			
BA	0.43	49	0.01	SiO₂	13.7	13.7	5.7	2.6	0.31	48.10	3.49	2.70	3.44			
B	0.12	41	0.00	SiO₂	14.2	14.2	8.3	3.8	0.32	8.16	2.91	2.25	3.43			
Número de campo: 9 - 3;
Perfil: 14 (Tabela 16);
Data: 28.1.1996;
Classificação: Chernossolo Háplico ortico típico;
Localização, município e Estado: Reserva Extrativista do Alto Juruá-Seringal Tartaruga, Marechal Thaumaturgo, Acre;
Litologia: Argilitos sílticos e siltitos argilosos carbonatados;
Formação geológica: Formação Solimões;
Material originário: Sedimentos da Formação Solimões;
Pedregosidade: Não-pedregosa;
Rochosidade: Não-rochosa;
Relevo local: Suave ondulado;
Relevo regional: Forte ondulado;
Erosão: Não-aparente;
Drenagem: Bem drenado;
Vegetação primária: Floresta tropical aberta com bambu;
Uso atual: Vegetação primária;
Descrito e coletado por: Antonio Willian Flores de Melo e Eufran Ferreira do Amaral.
Descrição morfológica

A1 0 - 20 cm; bruno-escuro (7,5YR 4/2 úmido); franco-siltosa; fraca pequeno blocos angulares; duro, friável; transição plana e clara.

A2 20 - 44 cm; bruno-escuro (7,5YR 4/2 úmido); franco-argilosa; fraca pequeno a médio blocos angulares; duro, friável; transição plana e clara.

AB 44 - 54 cm; bruno-avermelhado-escuro (5YR 3/3 úmido); franco-siltosa; fraca pequeno a médio blocos subangulares; duro, friável; transição plana e clara.

BA 54 - 66 cm; bruno-avermelhado-escuro (5YR 3/4 úmido); franca; grãos simples muito pequeno granular; ligeiramente duro, solto; transição plana e clara.

Bi 66 - 97 cm; bruno-avermelhado (5YR 4/3 úmido); franca; grãos simples muito pequeno granular; ligeiramente duro, solto; transição plana e clara.

BC 97 - 111 cm; bruno-avermelhado (5YR 4/4 úmido); franco-arenosa; moderada médio blocos angulares; muito duro, firme; transição plana e clara.

CB 111 - 1130 cm; bruno-avermelhado (5YR 4/4 úmido); franco-arenosa forte; grande blocos angulares; muito duro, firme.

Raízes: Muitas e finas a médias nos horizontes A1, A2, AB e BA, muitas e finas em Bi, comuns e finas em BC, poucas e finas em CB e C.
TABELA 16. Análises físicas e químicas de um perfil de solo Chernossolo Háplico ortóico típico (Perfil 14).

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Frações da amostra total (%)</th>
<th>Composição granulométrica de terra fina (dispersão com NaOH) %</th>
<th>Argila dispersa em água (%)</th>
<th>Grau de floculação (%)</th>
<th>% Silte</th>
<th>% Argila</th>
<th>Densidade g/cm³</th>
<th>Porosidade %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0-20</td>
<td>6.8 < 20 25.4 41.8 19 2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>20-44</td>
<td>3.8 25.0 41.4 29.6 1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>44-66</td>
<td>2.6 25.1 50.7 19.5 2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bt</td>
<td>66-86</td>
<td>0.4 43.7 48.3 6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>86-100</td>
<td>54.8 3.0 29.2 1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>100-150</td>
<td>1.2 25.7 37.6 8.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>pH (1:2.5)</th>
<th>Complexo sortivo cmol / 100 g</th>
<th>Valores V (sat. de bases) % 100 Al III + Si 0.24</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>6.12</td>
<td>5.23 34.45 6.83 41.8 0.16 43.54 95.64 0.24 19</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>6.07</td>
<td>5.24 37.46 7.06 0.10 44.78 0.09 46.31 96.78 0.20 8</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>6.03</td>
<td>5.52 32.43 7.80 0.07 40.24 0.09 41.29 97.67 0.24 390</td>
<td></td>
</tr>
<tr>
<td>Bt</td>
<td>5.72</td>
<td>4.77 33.47 8.16 0.08 42.97 0.07 44.81 98.76 0.28 230</td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>5.61</td>
<td>4.69 31.42 7.89 0.08 39.54 0.18 40.99 96.68 0.24 320</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5.68</td>
<td>4.67 34.81 8.32 0.06 43.42 0.21 44.91 98.76 0.28 320</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>C (orgânico) N (%)</th>
<th>N (mg/100 g)</th>
<th>SiO₂ (dag/kg)</th>
<th>Al₂O₃ (dag/kg)</th>
<th>Fe₂O₃ (dag/kg)</th>
<th>P₂O₅ (dag/kg)</th>
<th>MNO (%)</th>
<th>CaCO₃ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1.60</td>
<td>0.07 18.7</td>
<td>1.60</td>
<td>0.47 43.02</td>
<td>3.74 2.50</td>
<td>2.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>0.71</td>
<td>0.07 18.2</td>
<td>5.91</td>
<td>0.29 22.9</td>
<td>2.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>0.65</td>
<td>0.07 68.1</td>
<td>5.45</td>
<td>0.82 68.1</td>
<td>2.07 2.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>0.20</td>
<td>0.07 28.7</td>
<td>5.64</td>
<td>0.19 68.1</td>
<td>2.07 2.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.96</td>
<td>0.07 68.1</td>
<td>5.64</td>
<td>0.19 68.1</td>
<td>2.07 2.07</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gleissolos (G)

São solos constituídos por material mineral, com horizonte glei dentro dos primeiros 50 cm da superfície, ou entre 50 e 125 cm desde que imediatamente abaixo do horizonte A ou E, ou precedido por horizonte B incipiente, B textural ou horizonte C com presença de mosqueados abundantes com cores de redução e satisfazendo, ainda, os seguintes requisitos:

? ausência de qualquer tipo de horizonte B diagnóstico acima do horizonte glei;
? ausência de horizonte vértico ou plíntico acima do horizonte glei ou coincidente com este;
? ausência de horizonte B textural com mudança textural abrupta;
? ausência de horizonte hístico com 40 cm ou mais de espessura.

Subordens registradas

Gleissolo Háplico Ta eutrófico típico.
Gleissolo Háplico Ta alumínico típico.
Descrição dos perfis

Número de campo: 1 - 3;
Perfis: 6 (Tabela 17);
Data: 16.1.1996;
Classificação: Gleissolo Háplico Ta eutrófico típico;
Localização, município e Estado: Reserva Extrativista do Alto Juruá-Seringal Seringueirinha, Marechal Thaumaturgo, Acre;
Litologia: Argilítos sílticos e siltitos argilosos carbonatados;
Formação geológica: Formação Solimões;
Material originário: Sedimentos da Formação Solimões;
Pedregosidade: Não-pedregosa;
Rochosidade: Não-rochosa;
Relevo local: Forte ondulado;
Relevo regional: Fortemente ondulado;
Erosão: Não-aparente;
Drenagem: Mal drenado;
Vegetação primária: Campinarana;
Uso atual: Vegetação primária;
Descrito e coletado por: Antonio Willian Flores de Melo e Eufran Ferreira do Amaral.
Descrição morfológica

A1 0 - 8 cm; bruno-acinzentado muito escuro (10YR 3/2 úmido); muito argilosa; maciça; muito duro, friável, muito plástico, muito pegajoso; transição plana e abrupta.

Cag 8 - 30 cm; bruno-acinzentado-escuro (10YR 4/2 úmido); muito argilosa; maciça; extremamente duro, firme, muito plástico; muito pegajoso, transição plana e abrupta.

Cg1 30 - 60 cm; bruno-acinzentado (2,5Y 5/2 úmido); muito argilosa; maciça; extremamente duro, firme, muito plástico, muito pegajoso; transição plana e abrupta.

Cg2 30 - 100+ cm; bruno-acinzentado (2,5Y 5/2 úmido); muito argilosa; maciça; extremamente duro, firme, muito plástico, muito pegajoso.

Raízes: Poucas e finas nos horizontes A1, Cag, raras e finas em Cg1 e Cg2.
TABELA 17. Análises físicas e químicas de um perfil de solo Gleissolo Háplico Ta eutrófico típico (Perfil 6).

<table>
<thead>
<tr>
<th>Simbolo</th>
<th>Profundidade em cm</th>
<th>Frações da amostra total (%</th>
<th>Composição granulométrica de terra fina (dispersão com NaOH) %</th>
<th>Argila dispersa em água (%</th>
<th>Grau de floca- ção (%</th>
<th>% Silte % Argila</th>
</tr>
</thead>
<tbody>
<tr>
<td>At</td>
<td>> 20</td>
<td>0.3</td>
<td>15</td>
<td>28.9</td>
<td>69.3</td>
<td>0.4</td>
</tr>
<tr>
<td>CAg</td>
<td>20-20</td>
<td>0.7</td>
<td>23</td>
<td>27.7</td>
<td>69.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Cg1</td>
<td>20-30</td>
<td>0.7</td>
<td>29</td>
<td>34.9</td>
<td>61.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Cg2</td>
<td>60-100</td>
<td>0.6</td>
<td>23</td>
<td>30.5</td>
<td>66.6</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>pH (1:2.5)</th>
<th>Completo sortivo cmol./100 g</th>
<th>Valor V (sat. De bases) 100. Al***</th>
<th>P.extrai- vel mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>At</td>
<td>5.66</td>
<td>5.12</td>
<td>35.80</td>
<td>6.30</td>
</tr>
<tr>
<td>CAg</td>
<td>5.78</td>
<td>5.10</td>
<td>37.02</td>
<td>5.87</td>
</tr>
<tr>
<td>Cg1</td>
<td>4.92</td>
<td>3.74</td>
<td>25.49</td>
<td>7.08</td>
</tr>
<tr>
<td>Cg2</td>
<td>5.12</td>
<td>4.28</td>
<td>32.15</td>
<td>7.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>C (orgânico) (dag/kg)</th>
<th>N (dag/mg)</th>
<th>Cl (N)</th>
<th>Ataque por H₂SO₄ (1:1) %</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>TiO₂</th>
<th>P₂O₅</th>
<th>MnO</th>
</tr>
</thead>
<tbody>
<tr>
<td>At</td>
<td>2.03</td>
<td>34</td>
<td>0.06</td>
<td>27.7</td>
<td>16.4</td>
<td>6.1</td>
<td>0.52</td>
<td>25.19</td>
<td>2.87</td>
<td>2.32</td>
</tr>
<tr>
<td>CAg</td>
<td>0.97</td>
<td>38</td>
<td>0.03</td>
<td>27.0</td>
<td>16.1</td>
<td>7.0</td>
<td>0.50</td>
<td>27.48</td>
<td>2.85</td>
<td>2.23</td>
</tr>
<tr>
<td>Cg1</td>
<td>0.44</td>
<td>115</td>
<td>0.50</td>
<td>27.0</td>
<td>16.1</td>
<td>7.0</td>
<td>0.50</td>
<td>27.48</td>
<td>2.85</td>
<td>2.23</td>
</tr>
<tr>
<td>Cg2</td>
<td>0.44</td>
<td>55</td>
<td>0.01</td>
<td>25.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Número de campo: 10-3;
Perfil: 15 (Tabela 18);
Data: 28.1.1996;
Classificação: Gleissolo Háplico Ta eutrófico típico;
Localização, município e Estado: Reserva Extrativista do Alto Juruá-Seringal Seringueirinha, Marechal Thaumaturgo, Acre;
Litologia: Argilitos sílticos e siltitos argilosos carbonatados;
Formação geológica: Formação Solimões;
Material originário: Sedimentos da Formação Solimões;
Pedregosidade: Não-pedregosa;
Rochosidade: Não-rochosa;
Relevo local: Plano;
Relevo regional: Forte ondulado;
Erosão: Não-aparente;
Drenagem: Mal drenado;
Vegetação primária: Floresta tropical aberta com palmeiras;
Uso atual: Vegetação primária;
Descrito e coletado por: Antonio Willian Flores de Melo e Eufran Ferreira do Amaral.

Descrição morfológica

A1 0 - 10 cm; bruno (10YR 4/3 úmido); franco-siltosa; fraca pequeno blocos subangulares; duro, friável; transição plana e clara.

CA 10 - 37 cm; cinzento-brunado-claro (2,5Y 6/2 úmido); franco-argilo-siltosa; moderada médio maciça que se desfaz em blocos; duro, friável; transição plana e clara.

Cg1 37 - 93 cm; cinzento-claro (2,5Y 7/1 úmido); amarelo-oliváceo (2,5YR 6/8 mosqueado); argilo-siltosa; moderada médio maciça que se desfaz em blocos; duro, friável; transição plana e clara.

Cg2 93 - 100+ cm; cinzento-claro (2,5Y 7/2 úmido); amarelo-oliváceo (2,5YR 6/8 mosqueado); argilo-siltosa; maciça; ligeiramente duro, solto.

Raízes: Muitas e finas no horizonte A1, raras e finas em CA, Cg1 e Cg2.
TABELA 18. Análises físicas e químicas de um perfil de solo Gleissolo Háplico Ta eutrófico típico (Perfil 15).

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Frações da amostra total (%</th>
<th>Composição granulométrica de terra fina (dispersão com NaOH)</th>
<th>Argila dispersa em água (%)</th>
<th>Grau de floculação (%)</th>
<th>%Silte</th>
<th>%Argila</th>
<th>Densidade g/cm³</th>
<th>Porosidade % (volume)</th>
<th>Valor V (sat. De bases)</th>
<th>100. Al+++</th>
<th>Al++</th>
<th>P. extralval mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0-10</td>
<td>1.61 26.28 51.52 20.49</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>10-37</td>
<td>3.72 7.07 55.07 34.13</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cg1</td>
<td>37-93</td>
<td>0.34 5.83 42.58 51.25</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cg2</td>
<td>93-100</td>
<td>0.44 3.83 66.50 49.30</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>pH (1:2,5)</th>
<th>Complexo cíntrico (cmol+/100 g)</th>
<th>Valor V (sat. De bases)</th>
<th>100. Al+++</th>
<th>Al++</th>
<th>P. extralval mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>5.60</td>
<td>5.20 11.95 3.49 0.49 0.07 16 0.26 2.23 18.47 86.63 1.60 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>4.22</td>
<td>3.74 7.18 4.66 8.35 0.11 12.39 7.09 1.56 20.83 50.61 36.66 6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cg1</td>
<td>4.26</td>
<td>3.42 1.28 3.26 6.16 0.51 5.21 18.27 1.18 24.61 21.16 77.82 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cg2</td>
<td>4.36</td>
<td>3.48 4.17 3.77 0.16 0.32 8.43 16.11 1.21 25.75 32.73 65.94 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>C (orgânico) (dag/kg)</th>
<th>N (dag/kg)</th>
<th>Ataque por H2SO4 (1/1)</th>
<th>%</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>TiO2</th>
<th>P2O5</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>Fe2O3 livra (%)</th>
<th>Equivalência de CaCO3 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0.44</td>
<td>17</td>
<td>0.03</td>
<td>10.0</td>
<td>4.5</td>
<td>2.9</td>
<td>0.0</td>
<td>38.78</td>
<td>3.7%</td>
<td>2.11</td>
<td>3.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>0.65</td>
<td>25</td>
<td>0.03</td>
<td>11.7</td>
<td>11.4</td>
<td>4.5</td>
<td>0.50</td>
<td>2.29</td>
<td>2.64</td>
<td>2.49</td>
<td>3.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cg1</td>
<td>0.07</td>
<td>117</td>
<td>0.00</td>
<td>11.7</td>
<td>11.4</td>
<td>4.5</td>
<td>0.50</td>
<td>2.29</td>
<td>2.64</td>
<td>2.49</td>
<td>3.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cg2</td>
<td>0.01</td>
<td>74</td>
<td>0.00</td>
<td>11.7</td>
<td>11.4</td>
<td>4.5</td>
<td>0.50</td>
<td>2.29</td>
<td>2.64</td>
<td>2.49</td>
<td>3.03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Neossolos (R)

Solos constituídos por material mineral ou orgânico com menos de 30 cm de espessura, não apresentando qualquer tipo de horizonte B diagnóstico e satisfazendo os seguintes requisitos:

? ausência de horizonte glei, exceto no caso de solos com textura areia ou areia franca, dentro de 50 cm da superfície do solo, ou entre 50 cm e 120 cm de profundidade, se os horizontes sobrejacentes apresentarem mosqueados de redução em quantidade abundante;

? ausência de horizonte vértilo imediatamente abaixo de horizonte A;

? ausência de horizonte plíntico dentro de 40 cm, ou dentro de 200 cm da superfície se imediatamente abaixo de horizontes A, E ou precedidos de horizontes de coloração pálida, variegada ou com mosqueados em quantidade abundante, com uma ou mais das seguintes cores:

? matiz 2,5Y ou 5Y; ou

? matiz 10YR a 7,5YR com cromas baixos, normalmente iguais ou inferiores a 4, podendo atingir 6, no caso de matiz 10YR;

? ausência de horizontes A chernozêmico conjugado a horizonte cálcico ou C carbonático.

Subordens encontradas

Neossolo Flúvico Ta eutrófico.

Descrição dos perfis

Neossolo Flúvico Ta eutrófico típico.

Número de campo: 11 - 3;
Perfil: 16 (Tabela 19);
Data: 29.1.1996;
Classificação: Neossolo Flúvico Ta eutrófico típico;
Localização, município e Estado: Reserva Extrativista do Alto Juruá-Boca do Tejo, Marechal Thaumaturgo, Acre;
Litologia: Sedimentos de argilitos sílticos e siltitos argilosos carbonatados;
Formação geológica: Formação Solimões;
Material originário: Sedimentos da Formação Solimões;
Pedregosidade: Não-pedregosa;
Rochosidade: Não-rochosa;
Relevo local: Plano;
Relevo regional: Forte ondulado;
Erosão: Ligeira;
Drenagem: Mal drenado;
Vegetação primária: Floresta aluvial;
Uso atual: Vegetação primária;
Descrito e coletado por: Antonio Willian Flores de Melo e Eufran Ferreira do Amaral.

Descrição morfológica

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Profundidade</th>
<th>Cor</th>
<th>Textura</th>
<th>Cores</th>
<th>Coarse-Grainedness</th>
<th>Macroblocks</th>
<th>Hardness</th>
<th>Firmness</th>
<th>Transition</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0 - 7 cm</td>
<td>10YR 4/4 úmido</td>
<td>franco-argilo-siltosa</td>
<td>fraco pequeno blocos subangulares</td>
<td>duro, friável</td>
<td>transição plana e clara</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>7 - 20 cm</td>
<td>10YR 5/4 úmido</td>
<td>franco-argilo-siltosa</td>
<td>fraco pequeno blocos subangulares</td>
<td>duro, firme</td>
<td>transição plana e clara</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>20 - 48 cm</td>
<td>10YR 5/6 úmido</td>
<td>amarelo-oliváceo (2,5YR 6/8 mosqueado)</td>
<td>franco-argilosa</td>
<td>maciça</td>
<td>muito duro, muito firme</td>
<td>transição plana e clara</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIC2</td>
<td>48 - 74 cm</td>
<td>2,5YR 6/4 úmido</td>
<td>cinzento-brunado-claro (2,5YR 6/2 mosqueado)</td>
<td>franco-argilosa</td>
<td>maciça</td>
<td>muito duro, muito firme</td>
<td>transição plana e clara</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIC3</td>
<td>74 - 90+ cm</td>
<td>10YR 5/8 úmido</td>
<td>bruno-amarelado (10YR 7/1 mosqueado)</td>
<td>franco-argilosa</td>
<td>maciça</td>
<td>muito duro, muito firme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Raízes: Muitas e finas no horizonte A1, raras e finas em CA, C1 e IIC2.
TABELA 19. Análises físicas e químicas de um perfil de solo Neossolo Flúvico Ta eutrófico típico (Perfil 16).

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Frações da amostra total (%)</th>
<th>Composição granulométrica de terra fina (dispersão com NaOH) %</th>
<th>Argila dispersa</th>
<th>Grau de flocação</th>
<th>% Silte</th>
<th>Densidade g/cm³</th>
<th>Porosidade %</th>
<th>% Argila</th>
<th>Aparente</th>
<th>Real</th>
<th>% (volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0-7</td>
<td>1.3 14.2 54.08 31.31 1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>7-20</td>
<td>1.3 16.0 52.34 30.32 1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>20-48</td>
<td>3.9 24.26 43.48 29.26 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIC3</td>
<td>74-90°</td>
<td>1.5 26.72 45.55 26.25 1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizonte</td>
<td>pH (1:2.5)</td>
<td>Complexo scrotivo cmol+/100 g</td>
<td>Valor V (sat. de bases) %</td>
<td>100. Al+++</td>
<td>Al*** S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>4.93</td>
<td>16.90 5.72 0.18 0.17 22.97 3.45 3.07 29.53 77.79 13.19 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>4.26</td>
<td>19.02 5.39 0.44 0.13 24.99 0.87 5.12 30.38 62.26 1.07 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>4.83</td>
<td>11.98 6.18 0.18 0.24 18.28 6.79 2.13 27.20 87.20 27.09 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIC2</td>
<td>4.88</td>
<td>11.98 7.95 0.11 0.38 12.16 5.92 0.92 19.05 64.01 52.74 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIC3</td>
<td>4.97</td>
<td>10.93 5.66 0.13 0.55 11.26 5.92 1.44 24.34 77.90 24.34 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizonte</td>
<td>C (orgânico) (dag/kg)</td>
<td>N (dag/kg)</td>
<td>C/N</td>
<td>Ataque por H₂SO₄ (1:1) %</td>
<td>% SiO₂ AuO₃</td>
<td>SiO₂ Fe₂O₃</td>
<td>Al₂O₃ Fe₂O₃</td>
<td>Equiva- lência de CaCO₃ (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0.56</td>
<td>46 16.2 8.3 4.3 0.43 11.46 3.32 2.49 3.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>1.96</td>
<td>31 36.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>0.85</td>
<td>55 16.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIC2</td>
<td>0.05</td>
<td>87 11.9 6.2 3.1 0.36 18.32 3.26 2.47 3.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIC3</td>
<td>0.35</td>
<td>138 13.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LEGENDA

Legenda de identificação dos solos

TGo1 Luvissolos Hipocrômicos órticos típicos + Cambissolos Háplicos Ta eutróficos típicos + Luvissolos Crômicos órticos típicos.

TGo2 Luvissolos Hipocrômicos órticos típicos + Cambissolos Háplicos Ta eutróficos típicos + Chernossolos Háplicos órticos típicos.

TGo3 Luvissolos Hipocrômicos órticos típicos + Chernossolos Háplicos órticos típicos.

AGo Alissolos Hipocrômicos argilúvicos típicos.

CXe Cambissolos Háplicos Ta eutróficos típicos + Luvissolos Hipocrômicos órticos típicos.

GXa Gleissolos Háplicos Ta alumínicos típicos + Neossolos Flúvicos Ta eutróficos típicos.

GXe Gleissolos Háplicos Ta eutróficos típicos + Espodossolos Cárpicos hidromórficos (Brasil, 1977).

RUe Neossolos Flúvicos Ta eutróficos típicos + Gleissolos Háplicos Ta alumínicos típicos + Alissolos Crômicos argilúvicos típicos.
DESCRIÇÃO SUMÁRIA DAS UNIDADES DE MAPEAMENTO

TGo3 Luvissolos Hipocrômicos órticos típicos + Chernossolos Háplicos órticos típicos (Classificação antiga: Podzólico Vermelho-Amarelo eutrófico Ta A moderado textura média fase Floresta tropical aberta com palmeiras relevo ondulado + Brunizém Eutrófico Ta textura média fase Floresta tropical aberta com palmeiras relevo ondulado).
Proporção dos componentes: 60% - 40%.
Extensão e porcentagem: 63.317 ha, com 12,6% da área.

TGo1 Luvissolos Hipocrômicos órticos típicos + Cambissolos Háplicos eutróficos típicos + Luvissolos Crômicos órticos típicos (Classificação antiga: Podzólico Vermelho-Amarelo eutrófico Ta A moderado textura média fase Floresta tropical aberta com palmeiras relevo ondulado + Cambissolo Eutrófico Ta A moderado textura média fase Floresta tropical aberta com palmeiras relevo ondulado).
Proporção dos componentes: 60% - 40%.
Extensão e porcentagem: 64.909 ha, com 18,7% da área.

TGo2 Luvissolos Hipocrômicos órticos típicos + Cambissolos Háplicos eutróficos típicos + Chernossolos Háplicos órticos típicos (Classificação antiga: Podzólico Vermelho-Amarelo eutrófico Ta A moderado textura argilosa fase Floresta tropical aberta com bambu relevo forte ondulado + Cambissolo Eutrófico Ta A moderado textura média fase Floresta tropical aberta com palmeiras relevo ondulado + Brunizém Eutrófico Ta textura média fase Floresta tropical aberta com bambu relevo ondulado).
Proporção dos componentes: 40% - 30% - 30%.
Extensão e porcentagem: 63.233 ha, com 12,4% da área.

AGO Alissolos Hipocrômicos argilúvicos típicos (Classificação antiga: Podzólico Vermelho-Amarelo álico Ta A proeminente textura média fase Floresta tropical aberta com bambu relevo ondulado).
Extensão e porcentagem: 11.389 ha, com 2,2% da área.
CXe Cambissolos Háplicos Ta eutróficos típicos + Luvissolos Hipocrômicos órticos típicos (Classificação antiga: Cambissolo Eutrófico Ta A moderado textura média fase Floresta tropical aberta com palmeira relevo ondulado e forte ondulado + Podzólico Vermelho-Amarelo eutrófico Ta A moderado textura média fase de Floresta tropical aberta com palmeiras relevo ondulado e forte ondulado). Proporção dos componentes: 60% - 40%. Extensão e porcentagem: 221.456 ha, com 43,8% da área.

GXe Gleissolos Háplicos Ta Eutróficos típicos + Espodossolos Carbicos hidromórficos (Classificação antiga: Glei Pouco húmico eutrófico Ta A fraco textura muito argilosa fase vegetação de várzea Campinarana relevo plano + Podzol hidromórfico eutrófico Ta A fraco textura muito argilosa fase vegetação de várzea Campina relevo plano). Proporção dos componentes: 70% - 30%. Extensão e porcentagem: 7.592 ha, com 1,5% da área.

GXA Gleissolos Háplicos Ta alumínicos típicos + Neossolos Flúvicos Ta eutróficos típicos (Classificação antiga: Glei Pouco húmico epieutrófico Ta A fraco textura argilosa fase Floresta tropical aberta de várzea relevo ondulado + Solo Aluvial eutrófico Ta A fraco textura muito argilosa fase Floresta aluvial relevo plano). Proporção dos componentes: 60% - 40%. Extensão e porcentagem: 18.981 ha, com 3,8% da área.

RUe Neossolos Flúvicos Ta eutróficos típicos + Gleissolos Háplicos Ta alumínicos típicos + Aliossolos Crômicos argilúvicos típicos (Classificação antiga: Solo Aluvial eutrófico Ta A fraco textura muito argilosa fase Floresta aluvial relevo plano + Glei Pouco húmico epieutrófico Ta A fraco textura argilosa fase Floresta tropical aberta com palmeiras relevo ondulado + Podzólico Vermelho-Amarelo álico Ta A proeminente textura média fase Floresta tropical aberta de várzea relevo ondulado). Proporção dos componentes: 50% - 30% - 20%. Extensão e porcentagem: 25.309 ha, com 5,0% da área.
CONCLUSÕES E RECOMENDAÇÕES

Os solos da Reserva Extrativista do Alto Juruá são quase em sua totalidade de alta fertilidade natural e argila de atividade alta, tornando-os excelente para a agricultura. Em se tratando de solos da Amazônia, representam a exceção, haja vista que a grande maioria dos solos amazônicos apresenta baixa fertilidade natural, por causa das condições ambientais favoráveis aos processos de lixiviação e degradação.

Excluindo a alta fertilidade, os solos da Reserva Extrativista do Alto Juruá apresentam sérias restrições de uso quando se consideram as condições de relevo em que estão inseridos. A área apresenta relevo ondulado a forte ondulado e solos com alto gradiente textural, implicando em alta susceptibilidade à erosão. Observou-se, em algumas áreas de relevo forte ondulado e sobre a ocorrência de Cambissolo e Floresta tropical aberta, erosão laminar ligeira, que com a retirada da floresta natural, intensificar-se-á, causando danos irreversíveis ao solo e consequentemente ao ambiente.

As limitações de uso que os solos da Reserva Extrativista do Alto Juruá apresentam devem ser levadas em consideração quando se escolhem áreas para cultivos anuais ou para a conservação permanente no zoneamento. Áreas com relevo bastante movimentado não devem ser usadas para cultivos anuais, sendo preferível conservá-las.

A recuperação e manutenção de áreas utilizadas para agricultura, por alguns anos, é um fator muito importante para diminuir a retirada da floresta natural, um dos maiores problemas de ordem ambiental existente na região Amazônica. Podem-se adotar algumas medidas alternativas, como plantio de leguminosas em áreas já abandonadas ou em consórcio com as culturas, rotação de áreas, uso de práticas conservacionistas entre outras.
REFERÊNCIAS BIBLIOGRÁFICAS

ANEXO 1. Localização dos perfis estudados.